Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 137

Similar articles for PubMed (Select 21622934)

1.

The Yale cTAKES extensions for document classification: architecture and application.

Garla V, Lo Re V 3rd, Dorey-Stein Z, Kidwai F, Scotch M, Womack J, Justice A, Brandt C.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):614-20. doi: 10.1136/amiajnl-2011-000093. Epub 2011 May 27.

2.

MITRE system for clinical assertion status classification.

Clark C, Aberdeen J, Coarr M, Tresner-Kirsch D, Wellner B, Yeh A, Hirschman L.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):563-7. doi: 10.1136/amiajnl-2011-000164. Epub 2011 Apr 22.

3.

A knowledge discovery and reuse pipeline for information extraction in clinical notes.

Patrick JD, Nguyen DH, Wang Y, Li M.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):574-9. doi: 10.1136/amiajnl-2011-000302. Epub 2011 Jul 7.

4.

2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.

Uzuner Ö, South BR, Shen S, DuVall SL.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

5.

A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.

Jiang M, Chen Y, Liu M, Rosenbloom ST, Mani S, Denny JC, Xu H.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6. doi: 10.1136/amiajnl-2011-000163. Epub 2011 Apr 20.

6.

A flexible framework for deriving assertions from electronic medical records.

Roberts K, Harabagiu SM.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):568-73. doi: 10.1136/amiajnl-2011-000152. Epub 2011 Jul 1.

7.

Knowledge-based biomedical word sense disambiguation: an evaluation and application to clinical document classification.

Garla VN, Brandt C.

J Am Med Inform Assoc. 2013 Sep-Oct;20(5):882-6. doi: 10.1136/amiajnl-2012-001350. Epub 2012 Oct 16. Erratum in: J Am Med Inform Assoc. 2014 May-Jun;21(3):568.

8.

Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications.

Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG.

J Am Med Inform Assoc. 2010 Sep-Oct;17(5):507-13. doi: 10.1136/jamia.2009.001560.

9.

Automated concept-level information extraction to reduce the need for custom software and rules development.

D'Avolio LW, Nguyen TM, Goryachev S, Fiore LD.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):607-13. doi: 10.1136/amiajnl-2011-000183. Epub 2011 Jun 22.

10.

Automatic identification of critical follow-up recommendation sentences in radiology reports.

Yetisgen-Yildiz M, Gunn ML, Xia F, Payne TH.

AMIA Annu Symp Proc. 2011;2011:1593-602. Epub 2011 Oct 22.

11.

Ontology-guided feature engineering for clinical text classification.

Garla VN, Brandt C.

J Biomed Inform. 2012 Oct;45(5):992-8. doi: 10.1016/j.jbi.2012.04.010. Epub 2012 May 9.

12.

A study of transportability of an existing smoking status detection module across institutions.

Liu M, Shah A, Jiang M, Peterson NB, Dai Q, Aldrich MC, Chen Q, Bowton EA, Liu H, Denny JC, Xu H.

AMIA Annu Symp Proc. 2012;2012:577-86. Epub 2012 Nov 3.

13.

Recognition of medication information from discharge summaries using ensembles of classifiers.

Doan S, Collier N, Xu H, Pham HD, Tu MP.

BMC Med Inform Decis Mak. 2012 May 7;12:36. doi: 10.1186/1472-6947-12-36.

14.

Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010.

de Bruijn B, Cherry C, Kiritchenko S, Martin J, Zhu X.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62. doi: 10.1136/amiajnl-2011-000150. Epub 2011 May 12.

15.

Discerning tumor status from unstructured MRI reports--completeness of information in existing reports and utility of automated natural language processing.

Cheng LT, Zheng J, Savova GK, Erickson BJ.

J Digit Imaging. 2010 Apr;23(2):119-32. doi: 10.1007/s10278-009-9215-7. Epub 2009 May 30. Review.

16.

Automated outcome classification of emergency department computed tomography imaging reports.

Yadav K, Sarioglu E, Smith M, Choi HA.

Acad Emerg Med. 2013 Aug;20(8):848-54. doi: 10.1111/acem.12174.

17.

Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.

Tang B, Cao H, Wu Y, Jiang M, Xu H.

BMC Med Inform Decis Mak. 2013;13 Suppl 1:S1. doi: 10.1186/1472-6947-13-S1-S1. Epub 2013 Apr 5.

18.

Automatic construction of rule-based ICD-9-CM coding systems.

Farkas R, Szarvas G.

BMC Bioinformatics. 2008 Apr 11;9 Suppl 3:S10. doi: 10.1186/1471-2105-9-S3-S10.

19.

Automatic extraction of relations between medical concepts in clinical texts.

Rink B, Harabagiu S, Roberts K.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):594-600. doi: 10.1136/amiajnl-2011-000153.

20.

Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification.

Minard AL, Ligozat AL, Ben Abacha A, Bernhard D, Cartoni B, Deléger L, Grau B, Rosset S, Zweigenbaum P, Grouin C.

J Am Med Inform Assoc. 2011 Sep-Oct;18(5):588-93. doi: 10.1136/amiajnl-2011-000154. Epub 2011 May 19.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk