Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 219

1.

Detecting genetic interactions for quantitative traits with U-statistics.

Li M, Ye C, Fu W, Elston RC, Lu Q.

Genet Epidemiol. 2011 Sep;35(6):457-68. doi: 10.1002/gepi.20594. Epub 2011 May 26.

2.

A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence.

Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD.

Am J Hum Genet. 2007 Jun;80(6):1125-37. Epub 2007 Apr 25.

3.

A U-Statistic-based random Forest approach for genetic association study.

Li M, Peng RS, Wei C, Lu Q.

Front Biosci (Elite Ed). 2012 Jun 1;4:2707-17.

PMID:
22652671
4.

Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.

Xu HM, Sun XW, Qi T, Lin WY, Liu N, Lou XY.

PLoS One. 2014 Sep 26;9(9):e108103. doi: 10.1371/journal.pone.0108103. eCollection 2014.

5.

Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions.

Choi J, Park T.

BMC Syst Biol. 2013;7 Suppl 6:S15. doi: 10.1186/1752-0509-7-S6-S15. Epub 2013 Dec 13.

6.

A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies.

Lou XY, Chen GB, Yan L, Ma JZ, Mangold JE, Zhu J, Elston RC, Li MD.

Am J Hum Genet. 2008 Oct;83(4):457-67. doi: 10.1016/j.ajhg.2008.09.001. Epub 2008 Oct 2.

7.

Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes.

Zhu Z, Tong X, Zhu Z, Liang M, Cui W, Su K, Li MD, Zhu J.

PLoS One. 2013 Apr 23;8(4):e61943. doi: 10.1371/journal.pone.0061943. Print 2013.

8.

Power of multifactor dimensionality reduction and penalized logistic regression for detecting gene-gene interaction in a case-control study.

He H, Oetting WS, Brott MJ, Basu S.

BMC Med Genet. 2009 Dec 4;10:127. doi: 10.1186/1471-2350-10-127.

9.

Enabling personal genomics with an explicit test of epistasis.

Greene CS, Himmelstein DS, Nelson HH, Kelsey KT, Williams SM, Andrew AS, Karagas MR, Moore JH.

Pac Symp Biocomput. 2010:327-36.

10.

Gene-gene interaction analysis for the survival phenotype based on the Cox model.

Lee S, Kwon MS, Oh JM, Park T.

Bioinformatics. 2012 Sep 15;28(18):i582-i588. doi: 10.1093/bioinformatics/bts415.

11.

A genetic ensemble approach for gene-gene interaction identification.

Yang P, Ho JW, Zomaya AY, Zhou BB.

BMC Bioinformatics. 2010 Oct 21;11:524. doi: 10.1186/1471-2105-11-524.

12.

SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies.

Fang YH, Chiu YF.

Genet Epidemiol. 2012 Feb;36(2):88-98. doi: 10.1002/gepi.21602.

PMID:
22851472
13.

Genetic association test for multiple traits at gene level.

Guo X, Liu Z, Wang X, Zhang H.

Genet Epidemiol. 2013 Jan;37(1):122-9. doi: 10.1002/gepi.21688. Epub 2012 Oct 2.

14.

Trees Assembling Mann-Whitney approach for detecting genome-wide joint association among low-marginal-effect loci.

Wei C, Schaid DJ, Lu Q.

Genet Epidemiol. 2013 Jan;37(1):84-91. doi: 10.1002/gepi.21693. Epub 2012 Nov 7.

15.

Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.

Broadaway KA, Duncan R, Conneely KN, Almli LM, Bradley B, Ressler KJ, Epstein MP.

Genet Epidemiol. 2015 Jul;39(5):366-75. doi: 10.1002/gepi.21901. Epub 2015 Apr 17.

16.

A likelihood ratio-based Mann-Whitney approach finds novel replicable joint gene action for type 2 diabetes.

Lu Q, Wei C, Ye C, Li M, Elston RC.

Genet Epidemiol. 2012 Sep;36(6):583-93. doi: 10.1002/gepi.21651. Epub 2012 Jul 3.

17.

A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis.

Gui J, Moore JH, Kelsey KT, Marsit CJ, Karagas MR, Andrew AS.

Hum Genet. 2011 Jan;129(1):101-10. doi: 10.1007/s00439-010-0905-5. Epub 2010 Oct 28.

18.

A non-parametric approach for detecting gene-gene interactions associated with age-at-onset outcomes.

Li M, Gardiner JC, Breslau N, Anthony JC, Lu Q.

BMC Genet. 2014 Jul 1;15:79. doi: 10.1186/1471-2156-15-79.

19.

SYMPHONY, an information-theoretic method for gene-gene and gene-environment interaction analysis of disease syndromes.

Knights J, Yang J, Chanda P, Zhang A, Ramanathan M.

Heredity (Edinb). 2013 Jun;110(6):548-59. doi: 10.1038/hdy.2012.123. Epub 2013 Feb 20.

20.

Identification of multiple gene-gene interactions for ordinal phenotypes.

Kim K, Kwon MS, Oh S, Park T.

BMC Med Genomics. 2013;6 Suppl 2:S9. doi: 10.1186/1755-8794-6-S2-S9. Epub 2013 May 7.

Items per page

Supplemental Content

Write to the Help Desk