Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

Similar articles for PubMed (Select 21519920)


TCA cycle inactivation in Staphylococcus aureus alters nitric oxide production in RAW 264.7 cells.

Massilamany C, Gangaplara A, Gardner DJ, Musser JM, Steffen D, Somerville GA, Reddy J.

Mol Cell Biochem. 2011 Sep;355(1-2):75-82. doi: 10.1007/s11010-011-0840-3. Epub 2011 Apr 26.


Lipoprotein in the cell wall of Staphylococcus aureus is a major inducer of nitric oxide production in murine macrophages.

Kim NJ, Ahn KB, Jeon JH, Yun CH, Finlay BB, Han SH.

Mol Immunol. 2015 May;65(1):17-24. doi: 10.1016/j.molimm.2014.12.016. Epub 2015 Jan 16.


Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival.

Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW, Reitzer LJ, Musser JM.

Infect Immun. 2002 Nov;70(11):6373-82.


Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions.

Somerville GA, Saïd-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN, Musser JM.

Infect Immun. 2003 Aug;71(8):4724-32.


Outer membrane protein A (OmpA) of Shigella flexneri 2a links innate and adaptive immunity in a TLR2-dependent manner and involvement of IL-12 and nitric oxide.

Pore D, Mahata N, Chakrabarti MK.

J Biol Chem. 2012 Apr 6;287(15):12589-601. doi: 10.1074/jbc.M111.335554. Epub 2012 Feb 16.


Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence.

Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR.

Front Cell Infect Microbiol. 2011 Dec 27;1:19. doi: 10.3389/fcimb.2011.00019. eCollection 2011.


Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport.

Zhu Y, Xiong YQ, Sadykov MR, Fey PD, Lei MG, Lee CY, Bayer AS, Somerville GA.

Infect Immun. 2009 Oct;77(10):4256-64. doi: 10.1128/IAI.00195-09. Epub 2009 Aug 10.


Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death.

Chatterjee I, Becker P, Grundmeier M, Bischoff M, Somerville GA, Peters G, Sinha B, Harraghy N, Proctor RA, Herrmann M.

J Bacteriol. 2005 Jul;187(13):4488-96.


The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity.

Richardson AR, Dunman PM, Fang FC.

Mol Microbiol. 2006 Aug;61(4):927-39. Epub 2006 Jul 12.


Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent.

Mempel M, Voelcker V, Köllisch G, Plank C, Rad R, Gerhard M, Schnopp C, Fraunberger P, Walli AK, Ring J, Abeck D, Ollert M.

J Invest Dermatol. 2003 Dec;121(6):1389-96.


Metabolic sensor governing bacterial virulence in Staphylococcus aureus.

Ding Y, Liu X, Chen F, Di H, Xu B, Zhou L, Deng X, Wu M, Yang CG, Lan L.

Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4981-90. doi: 10.1073/pnas.1411077111. Epub 2014 Nov 3.


Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus.

Hartmann T, Zhang B, Baronian G, Schulthess B, Homerova D, Grubmüller S, Kutzner E, Gaupp R, Bertram R, Powers R, Eisenreich W, Kormanec J, Herrmann M, Molle V, Somerville GA, Bischoff M.

J Biol Chem. 2013 Dec 13;288(50):36116-28. doi: 10.1074/jbc.M113.516302. Epub 2013 Nov 5.


Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin.

Li C, Li H, Jiang Z, Zhang T, Wang Y, Li Z, Wu Y, Ji S, Xiao S, Ryffel B, Radek KA, Xia Z, Lai Y.

PLoS Pathog. 2014 Feb 20;10(2):e1003918. doi: 10.1371/journal.ppat.1003918. eCollection 2014 Feb.


Innate immune responses of epididymal epithelial cells to Staphylococcus aureus infection.

Zhao YT, Guo JH, Wu ZL, Xiong Y, Zhou WL.

Immunol Lett. 2008 Aug 15;119(1-2):84-90. doi: 10.1016/j.imlet.2008.05.002. Epub 2008 Jun 4.


A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity.

Richardson AR, Libby SJ, Fang FC.

Science. 2008 Mar 21;319(5870):1672-6. doi: 10.1126/science.1155207.


Panton-Valentine leukocidin does play a role in the early stage of Staphylococcus aureus skin infections: a rabbit model.

Lipinska U, Hermans K, Meulemans L, Dumitrescu O, Badiou C, Duchateau L, Haesebrouck F, Etienne J, Lina G.

PLoS One. 2011;6(8):e22864. doi: 10.1371/journal.pone.0022864. Epub 2011 Aug 5.


In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence.

Somerville GA, Beres SB, Fitzgerald JR, DeLeo FR, Cole RL, Hoff JS, Musser JM.

J Bacteriol. 2002 Mar;184(5):1430-7.


Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages.

Das P, Lahiri A, Lahiri A, Chakravortty D.

Microbiology. 2009 Aug;155(Pt 8):2476-89. doi: 10.1099/mic.0.029611-0. Epub 2009 Jun 11.


Innate and adaptive immune responses against Staphylococcus aureus skin infections.

Krishna S, Miller LS.

Semin Immunopathol. 2012 Mar;34(2):261-80. doi: 10.1007/s00281-011-0292-6. Epub 2011 Nov 6. Review.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk