Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 188

Similar articles for PubMed (Select 21493687)

1.

Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.

Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF.

Nucleic Acids Res. 2011 Jul;39(12):e82. doi: 10.1093/nar/gkr218. Epub 2011 Apr 14. Erratum in: Nucleic Acids Res. 2011 Sep 1;39(17):7879.

2.

Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues.

Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, Carlson DF, Bradley P, Bogdanove AJ, Voytas DF.

PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub 2012 Sep 24.

3.

Targeting DNA double-strand breaks with TAL effector nucleases.

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF.

Genetics. 2010 Oct;186(2):757-61. doi: 10.1534/genetics.110.120717. Epub 2010 Jul 26.

4.

TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction.

Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ.

Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22. doi: 10.1093/nar/gks608. Epub 2012 Jun 12.

5.

TAL effector nuclease (TALEN) engineering.

Li T, Yang B.

Methods Mol Biol. 2013;978:63-72. doi: 10.1007/978-1-62703-293-3_5.

PMID:
23423889
6.

Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes.

Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B.

Nucleic Acids Res. 2011 Aug;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub 2011 Mar 31.

7.

Efficient TALEN construction and evaluation methods for human cell and animal applications.

Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T.

Genes Cells. 2013 Apr;18(4):315-26. doi: 10.1111/gtc.12037. Epub 2013 Feb 6.

PMID:
23388034
8.

Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases.

Christian M, Qi Y, Zhang Y, Voytas DF.

G3 (Bethesda). 2013 Oct 3;3(10):1697-705. doi: 10.1534/g3.113.007104.

9.

TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat -1.

Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P, Bogdanove AJ.

PLoS One. 2013 Dec 3;8(12):e82120. doi: 10.1371/journal.pone.0082120. eCollection 2013.

10.

TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.

Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B.

Nucleic Acids Res. 2011 Jan;39(1):359-72. doi: 10.1093/nar/gkq704. Epub 2010 Aug 10.

11.

Breaking the code of DNA binding specificity of TAL-type III effectors.

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U.

Science. 2009 Dec 11;326(5959):1509-12. doi: 10.1126/science.1178811. Epub .

12.

E-TALEN: a web tool to design TALENs for genome engineering.

Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M.

Nucleic Acids Res. 2013 Nov;41(20):e190. doi: 10.1093/nar/gkt789. Epub 2013 Sep 3.

13.

Mojo Hand, a TALEN design tool for genome editing applications.

Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC.

BMC Bioinformatics. 2013 Jan 16;14:1. doi: 10.1186/1471-2105-14-1.

14.

Assembly of designer TAL effectors by Golden Gate cloning.

Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S.

PLoS One. 2011;6(5):e19722. doi: 10.1371/journal.pone.0019722. Epub 2011 May 19.

15.

Computational predictions provide insights into the biology of TAL effector target sites.

Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J.

PLoS Comput Biol. 2013;9(3):e1002962. doi: 10.1371/journal.pcbi.1002962. Epub 2013 Mar 14.

16.

A simple and efficient method for assembling TALE protein based on plasmid library.

Zhang Z, Li D, Xu H, Xin Y, Zhang T, Ma L, Wang X, Chen Z, Zhang Z.

PLoS One. 2013 Jun 20;8(6):e66459. doi: 10.1371/journal.pone.0066459. Print 2013.

17.

Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T.

Nucleic Acids Res. 2014 Jun;42(11):7436-49. doi: 10.1093/nar/gku329. Epub 2014 May 3.

18.

Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases.

Juillerat A, Beurdeley M, Valton J, Thomas S, Dubois G, Zaslavskiy M, Mikolajczak J, Bietz F, Silva GH, Duclert A, Daboussi F, Duchateau P.

BMC Mol Biol. 2014 Jul 5;15:13. doi: 10.1186/1471-2199-15-13.

19.

Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JS, Zhu JK, Mahfouz MM.

Plant Mol Biol. 2012 Mar;78(4-5):407-16. doi: 10.1007/s11103-012-9875-4. Epub 2012 Jan 22.

20.

Transcription activator-like effector nucleases enable efficient plant genome engineering.

Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF.

Plant Physiol. 2013 Jan;161(1):20-7. doi: 10.1104/pp.112.205179. Epub 2012 Nov 2.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk