Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 193

Similar articles for PubMed (Select 21427293)


Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies.

Treanor LM, Volanakis EJ, Zhou S, Lu T, Sherr CJ, Sorrentino BP.

Blood. 2011 May 19;117(20):5453-62. doi: 10.1182/blood-2010-09-309831. Epub 2011 Mar 22.


Epigenetic regulation of the Ink4a-Arf (Cdkn2a) tumor suppressor locus in the initiation and progression of Notch1-driven T cell acute lymphoblastic leukemia.

Volanakis EJ, Boothby MR, Sherr CJ.

Exp Hematol. 2013 Apr;41(4):377-86. doi: 10.1016/j.exphem.2012.11.006. Epub 2012 Nov 23.


Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL.

Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA.

Blood. 2011 Aug 11;118(6):1579-90. doi: 10.1182/blood-2010-08-300343. Epub 2011 Jun 13.


The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal.

McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH, Jane SM, Curtis DJ.

Science. 2010 Feb 12;327(5967):879-83. doi: 10.1126/science.1182378. Epub 2010 Jan 21.


Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss.

Medyouf H, Gao X, Armstrong F, Gusscott S, Liu Q, Gedman AL, Matherly LH, Schultz KR, Pflumio F, You MJ, Weng AP.

Blood. 2010 Feb 11;115(6):1175-84. doi: 10.1182/blood-2009-04-214718. Epub 2009 Dec 11.


Stage-specific Arf tumor suppression in Notch1-induced T-cell acute lymphoblastic leukemia.

Volanakis EJ, Williams RT, Sherr CJ.

Blood. 2009 Nov 12;114(20):4451-9. doi: 10.1182/blood-2009-07-233346. Epub 2009 Sep 16.


A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients.

Oram SH, Thoms JA, Pridans C, Janes ME, Kinston SJ, Anand S, Landry JR, Lock RB, Jayaraman PS, Huntly BJ, Pimanda JE, Göttgens B.

Oncogene. 2010 Oct 28;29(43):5796-808. doi: 10.1038/onc.2010.320. Epub 2010 Aug 2.


A DNA-binding mutant of TAL1 cooperates with LMO2 to cause T cell leukemia in mice.

Draheim KM, Hermance N, Yang Y, Arous E, Calvo J, Kelliher MA.

Oncogene. 2011 Mar 10;30(10):1252-60. doi: 10.1038/onc.2010.495. Epub 2010 Nov 8.


Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL.

McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ, Tremblay CS, Rabbitts TH, Curtis DJ.

Blood. 2013 Sep 19;122(12):2093-103. doi: 10.1182/blood-2012-09-458570. Epub 2013 Aug 7.


Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia.

Appert A, Nam CH, Lobato N, Priego E, Miguel RN, Blundell T, Drynan L, Sewell H, Tanaka T, Rabbitts T.

Cancer Res. 2009 Jun 1;69(11):4784-90. doi: 10.1158/0008-5472.CAN-08-4774.


The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia.

Curtis DJ, McCormack MP.

Clin Cancer Res. 2010 Dec 1;16(23):5618-23. doi: 10.1158/1078-0432.CCR-10-0440. Epub 2010 Sep 22. Review.


Hhex regulates Kit to promote radioresistance of self-renewing thymocytes in Lmo2-transgenic mice.

Shields BJ, Alserihi R, Nasa C, Bogue C, Alexander WS, McCormack MP.

Leukemia. 2015 Apr;29(4):927-38. doi: 10.1038/leu.2014.292. Epub 2014 Oct 6.


p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis.

Fasseu M, Aplan PD, Chopin M, Boissel N, Bories JC, Soulier J, von Boehmer H, Sigaux F, Regnault A.

Blood. 2007 Oct 1;110(7):2610-9. Epub 2007 May 16.


Notch1 gene mutations target KRAS G12D-expressing CD8+ cells and contribute to their leukemogenic transformation.

Kong G, Du J, Liu Y, Meline B, Chang YI, Ranheim EA, Wang J, Zhang J.

J Biol Chem. 2013 Jun 21;288(25):18219-27. doi: 10.1074/jbc.M113.475376. Epub 2013 May 14. Erratum in: J Biol Chem. 2013 Dec 27;288(52):37368.


Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential.

Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, Chen SC, Mullighan CG, Sorrentino BP.

J Exp Med. 2014 Apr 7;211(4):701-13. doi: 10.1084/jem.20122727. Epub 2014 Mar 31.


Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.

Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ.

J Clin Invest. 2008 Sep;118(9):3143-50. doi: 10.1172/JCI35798.


Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy.

Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, Brugman MH, Howe SJ, Reinders MJ, Thrasher AJ, Wagemaker G, van Dongen JJ, Staal FJ.

Leukemia. 2007 Apr;21(4):754-63. Epub 2007 Feb 1.


A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells.

Zhou S, Mody D, DeRavin SS, Hauer J, Lu T, Ma Z, Hacein-Bey Abina S, Gray JT, Greene MR, Cavazzana-Calvo M, Malech HL, Sorrentino BP.

Blood. 2010 Aug 12;116(6):900-8. doi: 10.1182/blood-2009-10-250209. Epub 2010 May 10.


LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways.

Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA, Elliott N, Yi Y, Chen X, Downing J, Mullighan C, Swing DA, Tessarollo L, Li L, Love P, Jenkins NA, Copeland NG, Thompson MA, Du Y, Davé UP.

PLoS One. 2014 Jan 21;9(1):e85883. doi: 10.1371/journal.pone.0085883. eCollection 2014.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk