Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 99

Similar articles for PubMed (Select 21402767)

1.

Essential role for neutrophils in pathogenesis and adaptive immunity in Chlamydia caviae ocular infections.

Lacy HM, Bowlin AK, Hennings L, Scurlock AM, Nagarajan UM, Rank RG.

Infect Immun. 2011 May;79(5):1889-97. doi: 10.1128/IAI.01257-10. Epub 2011 Mar 14.

2.

Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis.

Porcella SF, Carlson JH, Sturdevant DE, Sturdevant GL, Kanakabandi K, Virtaneva K, Wilder H, Whitmire WM, Song L, Caldwell HD.

Infect Immun. 2015 Feb;83(2):534-43. doi: 10.1128/IAI.02764-14. Epub 2014 Nov 17.

3.

Conjunctival FOXP3 expression in trachoma: do regulatory T cells have a role in human ocular Chlamydia trachomatis infection?

Faal N, Bailey RL, Jeffries D, Joof H, Sarr I, Laye M, Mabey DC, Holland MJ.

PLoS Med. 2006 Aug;3(8):e266.

4.

Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs.

Watkins NG, Hadlow WJ, Moos AB, Caldwell HD.

Proc Natl Acad Sci U S A. 1986 Oct;83(19):7480-4.

5.

Local host response to chlamydial urethral infection in male guinea pigs.

Wang Y, Nagarajan U, Hennings L, Bowlin AK, Rank RG.

Infect Immun. 2010 Apr;78(4):1670-81. doi: 10.1128/IAI.01339-09. Epub 2010 Feb 1.

6.
8.

Effect of inflammatory response on in vivo competition between two chlamydial variants in the guinea pig model of inclusion conjunctivitis.

Rank RG, Bowlin AK, Tormanen KI, Wang Y, Maurelli AT.

Infect Immun. 2012 Feb;80(2):612-9. doi: 10.1128/IAI.06054-11. Epub 2011 Dec 5.

9.

Ocular chlamydial infections: pathogenesis and emerging treatment strategies.

Kalayoglu MV.

Curr Drug Targets Infect Disord. 2002 Mar;2(1):85-91. Review.

PMID:
12462156
10.

Role of cell-mediated immunity in chlamydial infection: implications for ocular immunity.

Williams DM, Schachter J.

Rev Infect Dis. 1985 Nov-Dec;7(6):754-9.

PMID:
4070909
11.

Effect of Chlamydiaphage phiCPG1 on the course of conjunctival infection with "Chlamydia caviae" in guinea pigs.

Rank RG, Bowlin AK, Cané S, Shou H, Liu Z, Nagarajan UM, Bavoil PM.

Infect Immun. 2009 Mar;77(3):1216-21. doi: 10.1128/IAI.01109-08. Epub 2009 Jan 12.

12.

Ocular pathologic response elicited by Chlamydia organisms and the predictive value of quantitative modeling.

Wilson DP, Bowlin AK, Bavoil PM, Rank RG.

J Infect Dis. 2009 Jun 15;199(12):1780-9. doi: 10.1086/599093.

13.

Chlamydia-specific lymphocytes in conjunctiva during ocular infection: limiting dilution analysis.

Pal S, Pu Z, Huneke RB, Taylor HR, Whittum-Hudson JA.

Reg Immunol. 1990-1991;3(4):171-6.

PMID:
1716948
14.

CD8+ T cells define an unexpected role in live-attenuated vaccine protective immunity against Chlamydia trachomatis infection in macaques.

Olivares-Zavaleta N, Whitmire WM, Kari L, Sturdevant GL, Caldwell HD.

J Immunol. 2014 May 15;192(10):4648-54. doi: 10.4049/jimmunol.1400120. Epub 2014 Apr 7.

15.

Interruption of CXCL13-CXCR5 axis increases upper genital tract pathology and activation of NKT cells following chlamydial genital infection.

Jiang J, Karimi O, Ouburg S, Champion CI, Khurana A, Liu G, Freed A, Pleijster J, Rozengurt N, Land JA, Surcel HM, Tiitinen A, Paavonen J, Kronenberg M, Morré SA, Kelly KA.

PLoS One. 2012;7(11):e47487. doi: 10.1371/journal.pone.0047487. Epub 2012 Nov 26. Erratum in: PLoS One. 2013;8(5). doi:10.1371/annotation/2b6aab70-3c92-490e-86f0-ae15787dfa6e.

16.

Mucosal and systemic immune responses to plasmid protein pgp3 in patients with genital and ocular Chlamydia trachomatis infection.

Ghaem-Maghami S, Ratti G, Ghaem-Maghami M, Comanducci M, Hay PE, Bailey RL, Mabey DC, Whittle HC, Ward ME, Lewis DJ.

Clin Exp Immunol. 2003 Jun;132(3):436-42.

18.
19.

Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

Hu VH, Holland MJ, Burton MJ.

PLoS Negl Trop Dis. 2013;7(2):e2020. doi: 10.1371/journal.pntd.0002020. Epub 2013 Feb 14. Review.

20.

Plasmid-cured Chlamydia caviae activates TLR2-dependent signaling and retains virulence in the guinea pig model of genital tract infection.

Frazer LC, Darville T, Chandra-Kuntal K, Andrews CW Jr, Zurenski M, Mintus M, AbdelRahman YM, Belland RJ, Ingalls RR, O'Connell CM.

PLoS One. 2012;7(1):e30747. doi: 10.1371/journal.pone.0030747. Epub 2012 Jan 24.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk