Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 158

Similar articles for PubMed (Select 21349930)

1.

Effects of bacterial infection on airway antimicrobial peptides and proteins in COPD.

Parameswaran GI, Sethi S, Murphy TF.

Chest. 2011 Sep;140(3):611-7. doi: 10.1378/chest.10-2760. Epub 2011 Feb 24.

2.

Moraxella catarrhalis acquisition, airway inflammation and protease-antiprotease balance in chronic obstructive pulmonary disease.

Parameswaran GI, Wrona CT, Murphy TF, Sethi S.

BMC Infect Dis. 2009 Nov 15;9:178. doi: 10.1186/1471-2334-9-178.

3.

Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae.

Lee HY, Andalibi A, Webster P, Moon SK, Teufert K, Kang SH, Li JD, Nagura M, Ganz T, Lim DJ.

BMC Infect Dis. 2004 May 5;4:12.

4.

Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease.

Sethi S, Sethi R, Eschberger K, Lobbins P, Cai X, Grant BJ, Murphy TF.

Am J Respir Crit Care Med. 2007 Aug 15;176(4):356-61. Epub 2007 May 3.

PMID:
17478618
5.

Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response.

Murphy TF, Brauer AL, Grant BJ, Sethi S.

Am J Respir Crit Care Med. 2005 Jul 15;172(2):195-9. Epub 2005 Apr 1.

6.

New strains of bacteria and exacerbations of chronic obstructive pulmonary disease.

Sethi S, Evans N, Grant BJ, Murphy TF.

N Engl J Med. 2002 Aug 15;347(7):465-71.

7.

Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease.

Desai H, Eschberger K, Wrona C, Grove L, Agrawal A, Grant B, Yin J, Parameswaran GI, Murphy T, Sethi S.

Ann Am Thorac Soc. 2014 Mar;11(3):303-9. doi: 10.1513/AnnalsATS.201310-350OC.

PMID:
24423399
8.

Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type I and II interferons.

Klaile E, Klassert TE, Scheffrahn I, Müller MM, Heinrich A, Heyl KA, Dienemann H, Grünewald C, Bals R, Singer BB, Slevogt H.

Respir Res. 2013 Aug 14;14:85. doi: 10.1186/1465-9921-14-85.

9.

Impaired innate immune alveolar macrophage response and the predilection for COPD exacerbations.

Berenson CS, Kruzel RL, Eberhardt E, Dolnick R, Minderman H, Wallace PK, Sethi S.

Thorax. 2014 Sep;69(9):811-8. doi: 10.1136/thoraxjnl-2013-203669. Epub 2014 Mar 31.

PMID:
24686454
10.

Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations.

Patel IS, Seemungal TA, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA.

Thorax. 2002 Sep;57(9):759-64.

11.

Haemophilus influenzae and smoking-related obstructive airways disease.

Otczyk DC, Clancy RL, Cripps AW.

Int J Chron Obstruct Pulmon Dis. 2011;6:345-51. doi: 10.2147/COPD.S19359. Epub 2011 Jun 16.

12.

Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations.

Barker BL, Haldar K, Patel H, Pavord ID, Barer MR, Brightling CE, Bafadhel M.

Chest. 2015 Jan;147(1):46-55. doi: 10.1378/chest.14-0764.

13.

Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease.

Mallia P, Footitt J, Sotero R, Jepson A, Contoli M, Trujillo-Torralbo MB, Kebadze T, Aniscenko J, Oleszkiewicz G, Gray K, Message SD, Ito K, Barnes PJ, Adcock IM, Papi A, Stanciu LA, Elkin SL, Kon OM, Johnson M, Johnston SL.

Am J Respir Crit Care Med. 2012 Dec 1;186(11):1117-24. doi: 10.1164/rccm.201205-0806OC. Epub 2012 Sep 28.

14.

Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers.

Chin CL, Manzel LJ, Lehman EE, Humlicek AL, Shi L, Starner TD, Denning GM, Murphy TF, Sethi S, Look DC.

Am J Respir Crit Care Med. 2005 Jul 1;172(1):85-91. Epub 2005 Apr 1.

15.

Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD.

Garcha DS, Thurston SJ, Patel AR, Mackay AJ, Goldring JJ, Donaldson GC, McHugh TD, Wedzicha JA.

Thorax. 2012 Dec;67(12):1075-80. doi: 10.1136/thoraxjnl-2012-201924. Epub 2012 Aug 3.

PMID:
22863758
16.

Relevance of lower airway bacterial colonization, airway inflammation, and pulmonary function in the stable stage of chronic obstructive pulmonary disease.

Zhang M, Li Q, Zhang XY, Ding X, Zhu D, Zhou X.

Eur J Clin Microbiol Infect Dis. 2010 Dec;29(12):1487-93. doi: 10.1007/s10096-010-1027-7. Epub 2010 Aug 20.

PMID:
20725845
17.

Murine model of chronic respiratory inflammation.

Lugade AA, Bogner PN, Thanavala Y.

Adv Exp Med Biol. 2011;780:125-41. doi: 10.1007/978-1-4419-5632-3_11. Review.

PMID:
21842370
18.

Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD.

Wilkinson TM, Hurst JR, Perera WR, Wilks M, Donaldson GC, Wedzicha JA.

Chest. 2006 Feb;129(2):317-24.

PMID:
16478847
19.

Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease.

Singh R, Mackay AJ, Patel AR, Garcha DS, Kowlessar BS, Brill SE, Donnelly LE, Barnes PJ, Donaldson GC, Wedzicha JA.

Respir Res. 2014 Sep 14;15:114. doi: 10.1186/s12931-014-0114-1.

20.

Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease.

Rosell A, Monsó E, Soler N, Torres F, Angrill J, Riise G, Zalacaín R, Morera J, Torres A.

Arch Intern Med. 2005 Apr 25;165(8):891-7.

PMID:
15851640
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk