Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 99

1.

Improving yield of industrial biomass propagation by increasing the Trx2p dosage.

Gómez-Pastor R, Pérez-Torrado R, Matallana E.

Bioeng Bugs. 2010 Sep-Oct;1(5):352-3. doi: 10.4161/bbug.1.5.12384.

PMID:
21326836
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.

Microb Cell Fact. 2010 Feb 12;9:9. doi: 10.1186/1475-2859-9-9. Erratum in: Microb Cell Fact. 2012;11:31.

PMID:
20152017
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.

Microb Cell Fact. 2012 Jan 9;11:4. doi: 10.1186/1475-2859-11-4.

PMID:
22230188
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.

Gómez-Pastor R, Pérez-Torrado R, Matallana E.

Appl Microbiol Biotechnol. 2012 May;94(3):773-87. doi: 10.1007/s00253-011-3738-9. Epub 2012 Jan 6.

PMID:
22223102
[PubMed - indexed for MEDLINE]
5.

Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.

Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.

Appl Microbiol Biotechnol. 2009 Jan;81(5):951-60. doi: 10.1007/s00253-008-1722-9. Epub 2008 Oct 3.

PMID:
18836715
[PubMed - indexed for MEDLINE]
6.

Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.

Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.

Appl Environ Microbiol. 2005 Nov;71(11):6831-7.

PMID:
16269716
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Transcriptomic and proteomic insights of the wine yeast biomass propagation process.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E.

FEMS Yeast Res. 2010 Nov;10(7):870-84. doi: 10.1111/j.1567-1364.2010.00667.x. Epub 2010 Aug 25.

PMID:
20738407
[PubMed - indexed for MEDLINE]
8.

Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.

Zuzuarregui A, Monteoliva L, Gil C, del Olmo Ml.

Appl Environ Microbiol. 2006 Jan;72(1):836-47.

PMID:
16391125
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides.

Garrido EO, Grant CM.

Mol Microbiol. 2002 Feb;43(4):993-1003.

PMID:
11929546
[PubMed - indexed for MEDLINE]
10.

Proteomic evolution of a wine yeast during the first hours of fermentation.

Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.

FEMS Yeast Res. 2008 Nov;8(7):1137-46. doi: 10.1111/j.1567-1364.2008.00389.x. Epub 2008 May 22.

PMID:
18503542
[PubMed - indexed for MEDLINE]
11.

Activation of translation via reduction by thioredoxin-thioredoxin reductase in Saccharomyces cerevisiae.

Jun KO, Song CH, Kim YB, An J, Oh JH, Choi SK.

FEBS Lett. 2009 Sep 3;583(17):2804-10. doi: 10.1016/j.febslet.2009.07.030. Epub 2009 Jul 19.

PMID:
19622355
[PubMed - indexed for MEDLINE]
Free Article
12.

Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.

Garre E, Raginel F, Palacios A, Julien A, Matallana E.

Int J Food Microbiol. 2010 Jan 1;136(3):295-303. doi: 10.1016/j.ijfoodmicro.2009.10.018. Epub 2009 Oct 28.

PMID:
19914726
[PubMed - indexed for MEDLINE]
13.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
[PubMed - indexed for MEDLINE]
14.

Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.

Menezes RA, Amaral C, Batista-Nascimento L, Santos C, Ferreira RB, Devaux F, Eleutherio EC, Rodrigues-Pousada C.

Biochem J. 2008 Sep 1;414(2):301-11. doi: 10.1042/BJ20071537.

PMID:
18439143
[PubMed - indexed for MEDLINE]
Free Article
15.

Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae.

Trotter EW, Grant CM.

Mol Microbiol. 2002 Nov;46(3):869-78.

PMID:
12410842
[PubMed - indexed for MEDLINE]
16.

Global gene expression analysis of yeast cells during sake brewing.

Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H.

Appl Environ Microbiol. 2006 Nov;72(11):7353-8. Epub 2006 Sep 22.

PMID:
16997994
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae.

Pizarro FJ, Jewett MC, Nielsen J, Agosin E.

Appl Environ Microbiol. 2008 Oct;74(20):6358-68. doi: 10.1128/AEM.00602-08. Epub 2008 Aug 22.

PMID:
18723660
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme.

Walkey CJ, Luo Z, Borchers CH, Measday V, van Vuuren HJ.

FEMS Yeast Res. 2011 Sep;11(6):499-508. doi: 10.1111/j.1567-1364.2011.00740.x. Epub 2011 Jun 16.

PMID:
21585652
[PubMed - indexed for MEDLINE]
19.

Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.

van Maris AJ, Bakker BM, Brandt M, Boorsma A, Teixeira de Mattos MJ, Grivell LA, Pronk JT, Blom J.

FEMS Yeast Res. 2001 Jul;1(2):139-49.

PMID:
12702359
[PubMed - indexed for MEDLINE]
20.

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk