Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 115

Similar articles for PubMed (Select 21314162)

1.

Optimization of band structure and quantum-size-effect tuning for two-photon absorption enhancement in quantum dots.

Padilha LA, Nootz G, Olszak PD, Webster S, Hagan DJ, Van Stryland EW, Levina L, Sukhovatkin V, Brzozowski L, Sargent EH.

Nano Lett. 2011 Mar 9;11(3):1227-31. doi: 10.1021/nl1042209. Epub 2011 Feb 11.

PMID:
21314162
2.

Role of symmetry breaking on the optical transitions in lead-salt quantum dots.

Nootz G, Padilha LA, Olszak PD, Webster S, Hagan DJ, Van Stryland EW, Levina L, Sukhovatkin V, Brzozowski L, Sargent EH.

Nano Lett. 2010 Sep 8;10(9):3577-82. doi: 10.1021/nl1018673. Erratum in: Nano Lett. 2011 Feb 9;11(2):917.

PMID:
20734976
3.

Two-photon absorption in CdTe quantum dots.

Padilha L, Fu J, Hagan D, Van Stryland E, Cesar C, Barbosa L, Cruz C.

Opt Express. 2005 Aug 22;13(17):6460-7.

PMID:
19498660
4.

Resonant enhancement of two-photon absorption in substituted fluorene molecules.

Hales JM, Hagan DJ, Van Stryland EW, Schafer KJ, Morales AR, Belfield KD, Pacher P, Kwon O, Zojer E, Bredas JL.

J Chem Phys. 2004 Aug 15;121(7):3152-60.

PMID:
15291625
5.

Three-photon absorption in semiconductor quantum dots: experiment.

Feng X, Ang YL, He J, Beh CW, Xu H, Chin WS, Ji W.

Opt Express. 2008 May 12;16(10):6999-7005.

PMID:
18545403
6.

Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

Protasenko V, Bacinello D, Kuno M.

J Phys Chem B. 2006 Dec 21;110(50):25322-31.

PMID:
17165978
7.

The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots.

Pu SC, Yang MJ, Hsu CC, Lai CW, Hsieh CC, Lin SH, Cheng YM, Chou PT.

Small. 2006 Nov;2(11):1308-13.

PMID:
17192978
8.

Experimental observation of quantum confinement in the conduction band of CdSe quantum dots.

Lee JR, Meulenberg RW, Hanif KM, Mattoussi H, Klepeis JE, Terminello LJ, van Buuren T.

Phys Rev Lett. 2007 Apr 6;98(14):146803. Epub 2007 Apr 5.

PMID:
17501301
9.

Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals.

Jasieniak J, Califano M, Watkins SE.

ACS Nano. 2011 Jul 26;5(7):5888-902. doi: 10.1021/nn201681s. Epub 2011 Jun 22.

PMID:
21662980
10.

Degenerate two-photon absorption in all-trans retinal: nonlinear spectrum and theoretical calculations.

Vivas MG, Silva DL, Misoguti L, ZaleŇõny R, Bartkowiak W, Mendonca CR.

J Phys Chem A. 2010 Mar 18;114(10):3466-70. doi: 10.1021/jp910010g.

PMID:
20155894
11.

[Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].

Ling X, Deng DW, Zhong WY, Yu JS.

Guang Pu Xue Yu Guang Pu Fen Xi. 2008 Jun;28(6):1317-21. Chinese.

PMID:
18800713
12.

Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.

Hyeon-Deuk K, Madrid AB, Prezhdo OV.

Dalton Trans. 2009 Dec 7;(45):10069-77. doi: 10.1039/b909267f. Epub 2009 Aug 27.

PMID:
19904435
13.

Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.

Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL.

Nano Lett. 2005 May;5(5):865-71.

PMID:
15884885
14.

Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese.

Ruedas-Rama MJ, Hall EA.

Analyst. 2009 Jan;134(1):159-69. doi: 10.1039/b814879a. Epub 2008 Nov 24.

PMID:
19082188
15.

Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited].

Cirloganu CM, Padilha LA, Fishman DA, Webster S, Hagan DJ, Van Stryland EW.

Opt Express. 2011 Nov 7;19(23):22951-60. doi: 10.1364/OE.19.022951.

PMID:
22109174
16.

The peculiar electronic structure of PbSe quantum dots.

An JM, Franceschetti A, Dudiy SV, Zunger A.

Nano Lett. 2006 Dec;6(12):2728-35.

PMID:
17163696
17.

The influence of surface trapping and dark states on the fluorescence emission efficiency and lifetime of CdSe and CdSe/ZnS quantum dots.

Gong HM, Zhou ZK, Song H, Hao ZH, Han JB, Zhai YY, Xiao S, Wang QQ.

J Fluoresc. 2007 Nov;17(6):715-20. Epub 2007 Aug 10.

PMID:
17690953
18.

Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots.

Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA.

J Am Chem Soc. 2004 Sep 29;126(38):11752-3.

PMID:
15382884
19.

One- and two-photon induced polymerization of methylmethacrylate using colloidal CdS semiconductor quantum dots.

Strandwitz NC, Khan A, Boettcher SW, Mikhailovsky AA, Hawker CJ, Nguyen TQ, Stucky GD.

J Am Chem Soc. 2008 Jul 2;130(26):8280-8. doi: 10.1021/ja711295k. Epub 2008 Jun 5.

PMID:
18529003
20.

Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence.

Wang J, Han H.

J Colloid Interface Sci. 2010 Nov 1;351(1):83-7. doi: 10.1016/j.jcis.2010.07.025. Epub 2010 Jul 16.

PMID:
20692669
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk