Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 154

1.

Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung.

Londhe VA, Sundar IK, Lopez B, Maisonet TM, Yu Y, Aghai ZH, Rahman I.

Pediatr Res. 2011 May;69(5 Pt 1):371-7. doi: 10.1203/PDR.0b013e318211c917.

2.

Hyperoxia arrests alveolar development through suppression of histone deacetylases in neonatal rats.

Zhu L, Li H, Tang J, Zhu J, Zhang Y.

Pediatr Pulmonol. 2012 Mar;47(3):264-74. doi: 10.1002/ppul.21540. Epub 2011 Sep 8.

PMID:
21905265
3.

Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins.

Harijith A, Pendyala S, Reddy NM, Bai T, Usatyuk PV, Berdyshev E, Gorshkova I, Huang LS, Mohan V, Garzon S, Kanteti P, Reddy SP, Raj JU, Natarajan V.

Am J Pathol. 2013 Oct;183(4):1169-82. doi: 10.1016/j.ajpath.2013.06.018. Epub 2013 Aug 8.

4.

Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice.

Auten RL, Mason SN, Auten KM, Brahmajothi M.

Am J Physiol Lung Cell Mol Physiol. 2009 Jul;297(1):L134-42. doi: 10.1152/ajplung.00112.2009. Epub 2009 May 1.

5.

Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia.

Auten RL, O'Reilly MA, Oury TD, Nozik-Grayck E, Whorton MH.

Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L32-40. Epub 2005 Aug 12.

6.

5-Lipoxygenase-activating protein (FLAP) inhibitor MK-0591 prevents aberrant alveolarization in newborn mice exposed to 85% oxygen in a dose- and time-dependent manner.

Park MS, Sohn MH, Kim KE, Park MS, Namgung R, Lee C.

Lung. 2011 Feb;189(1):43-50. doi: 10.1007/s00408-010-9264-1. Epub 2010 Nov 5.

PMID:
21052705
7.

Lipopolysaccharide induces up-regulation of TGF-α through HDAC2 in a rat model of bronchopulmonary dysplasia.

Ni W, Lin N, He H, Zhu J, Zhang Y.

PLoS One. 2014 Mar 4;9(3):e91083. doi: 10.1371/journal.pone.0091083. eCollection 2014.

8.

Transcriptional responses of neonatal mouse lung to hyperoxia by Nrf2 status.

McGrath-Morrow SA, Lauer T, Collaco JM, Lopez A, Malhotra D, Alekseyev YO, Neptune E, Wise R, Biswal S.

Cytokine. 2014 Jan;65(1):4-9. doi: 10.1016/j.cyto.2013.09.021. Epub 2013 Oct 17.

9.

Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.

Bozyk PD, Bentley JK, Popova AP, Anyanwu AC, Linn MD, Goldsmith AM, Pryhuber GS, Moore BB, Hershenson MB.

PLoS One. 2012;7(2):e31336. doi: 10.1371/journal.pone.0031336. Epub 2012 Feb 17. Erratum in: PLoS One. 2015;10(6):e0130369.

10.

Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.

Alejandre-Alcázar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Pérez J, Wygrecka M, Eul B, Köbrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE.

Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L537-49. Epub 2006 Oct 27.

11.

Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.

Alapati D, Rong M, Chen S, Hehre D, Hummler SC, Wu S.

Am J Respir Cell Mol Biol. 2014 Jul;51(1):104-13. doi: 10.1165/rcmb.2013-0346OC.

PMID:
24484510
12.

Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis.

Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA, Dannenberg JH.

EMBO J. 2010 Aug 4;29(15):2586-97. doi: 10.1038/emboj.2010.136. Epub 2010 Jun 22.

13.

Alterations of the thioredoxin system by hyperoxia: implications for alveolar development.

Tipple TE, Welty SE, Nelin LD, Hansen JM, Rogers LK.

Am J Respir Cell Mol Biol. 2009 Nov;41(5):612-9. doi: 10.1165/rcmb.2008-0224OC. Epub 2009 Feb 24.

14.

Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.

Velten M, Heyob KM, Rogers LK, Welty SE.

J Appl Physiol (1985). 2010 May;108(5):1347-56. doi: 10.1152/japplphysiol.01392.2009. Epub 2010 Mar 11.

15.

Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells.

Yang G, Hinson MD, Bordner JE, Lin QS, Fernando AP, La P, Wright CJ, Dennery PA.

Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L187-96. doi: 10.1152/ajplung.00082.2011. Epub 2011 May 13.

16.

Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia.

McGrath-Morrow S, Lauer T, Yee M, Neptune E, Podowski M, Thimmulappa RK, O'Reilly M, Biswal S.

Am J Physiol Lung Cell Mol Physiol. 2009 Apr;296(4):L565-73. doi: 10.1152/ajplung.90487.2008. Epub 2009 Jan 16.

17.

Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia.

Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH.

Am J Physiol Lung Cell Mol Physiol. 2007 May;292(5):L1073-84. Epub 2007 Jan 5.

18.

Functional and pathological effects of prolonged hyperoxia in neonatal mice.

Warner BB, Stuart LA, Papes RA, Wispé JR.

Am J Physiol. 1998 Jul;275(1 Pt 1):L110-7.

19.

Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.

Alphonse RS, Vadivel A, Coltan L, Eaton F, Barr AJ, Dyck JR, Thébaud B.

Am J Respir Cell Mol Biol. 2011 Feb;44(2):146-54. doi: 10.1165/rcmb.2009-0182OC. Epub 2010 Mar 26.

PMID:
20348209
20.

Altered small airways in aged mice following neonatal exposure to hyperoxic gas.

O'Reilly M, Harding R, Sozo F.

Neonatology. 2014;105(1):39-45. doi: 10.1159/000355641. Epub 2013 Nov 19.

PMID:
24281398
Items per page

Supplemental Content

Write to the Help Desk