Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 160

1.

Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.

Chi SW, Jeong DG, Woo JR, Lee HS, Park BC, Kim BY, Erikson RL, Ryu SE, Kim SJ.

FEBS Lett. 2011 Feb 18;585(4):664-70. doi: 10.1016/j.febslet.2011.01.029. Epub 2011 Jan 23.

PMID:
21266175
[PubMed - indexed for MEDLINE]
Free Article
2.

Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.

Kim SJ, Jeong DG, Chi SW, Lee JS, Ryu SE.

Nat Struct Biol. 2001 May;8(5):459-66.

PMID:
11323724
[PubMed - indexed for MEDLINE]
3.

Activation of the redox-regulated chaperone Hsp33 by domain unfolding.

Graf PC, Martinez-Yamout M, VanHaerents S, Lilie H, Dyson HJ, Jakob U.

J Biol Chem. 2004 May 7;279(19):20529-38. Epub 2004 Mar 15.

PMID:
15023991
[PubMed - indexed for MEDLINE]
Free Article
4.

The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.

Vijayalakshmi J, Mukhergee MK, Graumann J, Jakob U, Saper MA.

Structure. 2001 May 9;9(5):367-75.

PMID:
11377197
[PubMed - indexed for MEDLINE]
5.

Redox-regulated molecular chaperones.

Graf PC, Jakob U.

Cell Mol Life Sci. 2002 Oct;59(10):1624-31. Review.

PMID:
12475172
[PubMed - indexed for MEDLINE]
6.

Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.

Graumann J, Lilie H, Tang X, Tucker KA, Hoffmann JH, Vijayalakshmi J, Saper M, Bardwell JC, Jakob U.

Structure. 2001 May 9;9(5):377-87.

PMID:
11377198
[PubMed - indexed for MEDLINE]
7.

Verification of the interdomain contact site in the inactive monomer, and the domain-swapped fold in the active dimer of Hsp33 in solution.

Lee YS, Ryu KS, Kim SJ, Ko HS, Sim DW, Jeon YH, Kim EH, Choi WS, Won HS.

FEBS Lett. 2012 Feb 17;586(4):411-5. doi: 10.1016/j.febslet.2012.01.011. Epub 2012 Jan 17.

PMID:
22265690
[PubMed - indexed for MEDLINE]
Free Article
8.

Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.

Winter J, Linke K, Jatzek A, Jakob U.

Mol Cell. 2005 Feb 4;17(3):381-92.

PMID:
15694339
[PubMed - indexed for MEDLINE]
9.

The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold.

Won HS, Low LY, Guzman RD, Martinez-Yamout M, Jakob U, Dyson HJ.

J Mol Biol. 2004 Aug 20;341(4):893-9.

PMID:
15328602
[PubMed - indexed for MEDLINE]
10.

Chaperone activity with a redox switch.

Jakob U, Muse W, Eser M, Bardwell JC.

Cell. 1999 Feb 5;96(3):341-52.

PMID:
10025400
[PubMed - indexed for MEDLINE]
Free Article
11.

Oligomeric Hsp33 with enhanced chaperone activity: gel filtration, cross-linking, and small angle x-ray scattering (SAXS) analysis.

Akhtar MW, Srinivas V, Raman B, Ramakrishna T, Inobe T, Maki K, Arai M, Kuwajima K, Rao ChM.

J Biol Chem. 2004 Dec 31;279(53):55760-9. Epub 2004 Oct 19.

PMID:
15494414
[PubMed - indexed for MEDLINE]
Free Article
12.

The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism.

Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper DR, Graf PC, Joachimiak A, Jakob U, Derewenda ZS.

Structure. 2004 Oct;12(10):1901-7.

PMID:
15458638
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33.

Raman B, Siva Kumar LV, Ramakrishna T, Mohan Rao C.

FEBS Lett. 2001 Jan 26;489(1):19-24.

PMID:
11231006
[PubMed - indexed for MEDLINE]
Free Article
14.

Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.

Cremers CM, Reichmann D, Hausmann J, Ilbert M, Jakob U.

J Biol Chem. 2010 Apr 9;285(15):11243-51. doi: 10.1074/jbc.M109.084350. Epub 2010 Feb 5.

PMID:
20139072
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.

Grimshaw JP, Siegenthaler RK, Züger S, Schönfeld HJ, Z'graggen BR, Christen P.

J Mol Biol. 2005 Nov 4;353(4):888-96. Epub 2005 Sep 20.

PMID:
16198374
[PubMed - indexed for MEDLINE]
17.

Redox switch of hsp33 has a novel zinc-binding motif.

Jakob U, Eser M, Bardwell JC.

J Biol Chem. 2000 Dec 8;275(49):38302-10.

PMID:
10976105
[PubMed - indexed for MEDLINE]
Free Article
18.

Identification of a redox-regulated chaperone network.

Hoffmann JH, Linke K, Graf PC, Lilie H, Jakob U.

EMBO J. 2004 Jan 14;23(1):160-8. Epub 2003 Dec 11.

PMID:
14685279
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation.

Vickery LE, Cupp-Vickery JR.

Crit Rev Biochem Mol Biol. 2007 Mar-Apr;42(2):95-111. Review.

PMID:
17453917
[PubMed - indexed for MEDLINE]
20.

Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone.

Barbirz S, Jakob U, Glocker MO.

J Biol Chem. 2000 Jun 23;275(25):18759-66.

PMID:
10764757
[PubMed - indexed for MEDLINE]
Free Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk