Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

1.

Ostwald ripening in nanoalloys: when thermodynamics drives a size-dependent particle composition.

Alloyeau D, Prévot G, Le Bouar Y, Oikawa T, Langlois C, Loiseau A, Ricolleau C.

Phys Rev Lett. 2010 Dec 17;105(25):255901. Epub 2010 Dec 16.

PMID:
21231603
[PubMed]
2.

Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.

Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin O, Svedlindh P, Haase M, Weller H.

J Am Chem Soc. 2003 Jul 30;125(30):9090-101.

PMID:
15369366
[PubMed]
3.

Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.

Jia X, Listak J, Witherspoon V, Kalu EE, Yang X, Bockstaller MR.

Langmuir. 2010 Jul 20;26(14):12190-7. doi: 10.1021/la100840a.

PMID:
20575544
[PubMed]
4.

The definition of "critical radius" for a collection of nanoparticles undergoing Ostwald ripening.

Houk LR, Challa SR, Grayson B, Fanson P, Datye AK.

Langmuir. 2009 Oct 6;25(19):11225-7. doi: 10.1021/la902263s.

PMID:
19715330
[PubMed]
5.

Modeling of formation of nanoparticles in reverse micellar systems: Ostwald ripening of silver halide particles.

Shukla D, Joshi AA, Mehra A.

Langmuir. 2009 Apr 9;25(6):3786-93. doi: 10.1021/la803684y.

PMID:
19708254
[PubMed]
6.

Ostwald ripening of binary alloy particles.

Burlakov VM, Kantorovich L.

J Chem Phys. 2011 Jan 14;134(2):024521. doi: 10.1063/1.3530287.

PMID:
21241134
[PubMed]
7.

Direct observation of single Ostwald ripening processes by molecular dynamics simulation.

Kraska T.

J Phys Chem B. 2008 Oct 2;112(39):12408-13. doi: 10.1021/jp806315e. Epub 2008 Sep 10.

PMID:
18783194
[PubMed]
8.

Ostwald ripening of beta-carotene nanoparticles.

Liu Y, Kathan K, Saad W, Prud'homme RK.

Phys Rev Lett. 2007 Jan 19;98(3):036102. Epub 2007 Jan 17.

PMID:
17358697
[PubMed - indexed for MEDLINE]
9.

First principles studies of the effect of ostwald ripening on carbon nanotube chirality distributions.

Börjesson A, Bolton K.

ACS Nano. 2011 Feb 22;5(2):771-9. doi: 10.1021/nn101214v. Epub 2011 Jan 31.

PMID:
21280581
[PubMed]
10.

Co-Pt alloy nanoparticles produced using a template of nanoparticle array.

Kim JH, Kim J, Kim CK, Yoon CS.

J Colloid Interface Sci. 2006 Nov 1;303(1):131-6. Epub 2006 Jul 12.

PMID:
16890238
[PubMed]
11.

Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.

Madras G, McCoy BJ.

J Colloid Interface Sci. 2003 May 15;261(2):423-33.

PMID:
16256552
[PubMed]
12.

Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures.

Rimer JD, Vlachos DG, Lobo RF.

J Phys Chem B. 2005 Jul 7;109(26):12762-71.

PMID:
16852582
[PubMed]
13.

Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles.

Vayssières L, Chanéac C, Tronc E, Jolivet JP.

J Colloid Interface Sci. 1998 Sep 15;205(2):205-212.

PMID:
9735184
[PubMed - as supplied by publisher]
14.
15.

Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS).

Yu C, Koh S, Leisch JE, Toney MF, Strasser P.

Faraday Discuss. 2008;140:283-96; discussion 297-317.

PMID:
19213323
[PubMed - indexed for MEDLINE]
16.

Ostwald ripening in rarefied systems.

Burlakov VM.

Phys Rev Lett. 2006 Oct 13;97(15):155703. Epub 2006 Oct 10.

PMID:
17155338
[PubMed]
17.

Two-step growth of goethite from ferrihydrite.

Burleson DJ, Penn RL.

Langmuir. 2006 Jan 3;22(1):402-9.

PMID:
16378452
[PubMed]
18.

Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition.

Desikusumastuti A, Qin Z, Happel M, Staudt T, Lykhach Y, Laurin M, Rohr F, Shaikhutdinov S, Libuda J.

Phys Chem Chem Phys. 2009 Apr 14;11(14):2514-24. doi: 10.1039/b821198a. Epub 2009 Feb 12.

PMID:
19325986
[PubMed]
19.

Structure and chemical ordering in CoPt nanoalloys.

Rossi G, Ferrando R, Mottet C.

Faraday Discuss. 2008;138:193-210; discussion 211-23, 433-4.

PMID:
18447017
[PubMed]
20.

Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles.

Gnanaprakash G, Philip J, Jayakumar T, Raj B.

J Phys Chem B. 2007 Jul 19;111(28):7978-86. Epub 2007 Jun 20.

PMID:
17580856
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk