Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 162


Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

Yang F, Waters KM, Miller JH, Gritsenko MA, Zhao R, Du X, Livesay EA, Purvine SO, Monroe ME, Wang Y, Camp DG 2nd, Smith RD, Stenoien DL.

PLoS One. 2010 Nov 30;5(11):e14152. doi: 10.1371/journal.pone.0014152.


Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation.

Yang F, Stenoien DL, Strittmatter EF, Wang J, Ding L, Lipton MS, Monroe ME, Nicora CD, Gristenko MA, Tang K, Fang R, Adkins JN, Camp DG 2nd, Chen DJ, Smith RD.

J Proteome Res. 2006 May;5(5):1252-60.


Quantitative phosphoproteomics identifies filaggrin and other targets of ionizing radiation in a human skin model.

Yang F, Waters KM, Webb-Robertson BJ, Sowa MB, von Neubeck C, Aldrich JT, Markillie LM, Wirgau RM, Gritsenko MA, Zhao R, Camp DG 2nd, Smith RD, Stenoien DL.

Exp Dermatol. 2012 May;21(5):352-7. doi: 10.1111/j.1600-0625.2012.01470.x.


Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses.

Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, Cheng JF, Chen DJ.

Radiat Res. 2005 Jul;164(1):17-26.


Data integration reveals key homeostatic mechanisms following low dose radiation exposure.

Tilton SC, Matzke MM, Sowa MB, Stenoien DL, Weber TJ, Morgan WF, Waters KM.

Toxicol Appl Pharmacol. 2015 May 15;285(1):1-11. doi: 10.1016/j.taap.2015.01.019. Epub 2015 Feb 2.


Proteomic and phosphoproteomic analysis of chicken embryo fibroblasts infected with cell culture-attenuated and vaccine strains of Marek's disease virus.

Chien KY, Blackburn K, Liu HC, Goshe MB.

J Proteome Res. 2012 Dec 7;11(12):5663-77. doi: 10.1021/pr300471y. Epub 2012 Nov 15.


Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes.

El-Saghire H, Michaux A, Thierens H, Baatout S.

Int J Mol Med. 2013 Dec;32(6):1407-14. doi: 10.3892/ijmm.2013.1514. Epub 2013 Sep 30.


Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics.

Ferrando IM, Chaerkady R, Zhong J, Molina H, Jacob HK, Herbst-Robinson K, Dancy BM, Katju V, Bose R, Zhang J, Pandey A, Cole PA.

Mol Cell Proteomics. 2012 Aug;11(8):355-69. doi: 10.1074/mcp.M111.015750. Epub 2012 Apr 12.


Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.

Wu X, Tian L, Li J, Zhang Y, Han V, Li Y, Xu X, Li H, Chen X, Chen J, Jin W, Xie Y, Han J, Zhong CQ.

Mol Cell Proteomics. 2012 Dec;11(12):1640-51. doi: 10.1074/mcp.M112.019091. Epub 2012 Aug 30.


ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage.

Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ, Aebersold R, Shiloh Y.

Sci Signal. 2010 Dec 7;3(151):rs3. doi: 10.1126/scisignal.2001034.


Phosphoproteome of human glioblastoma initiating cells reveals novel signaling regulators encoded by the transcriptome.

Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu R, Ao-Kondo H, Tsumoto K, Akiyama T, Oyama M.

PLoS One. 2012;7(8):e43398. doi: 10.1371/journal.pone.0043398. Epub 2012 Aug 17.


Differential gene expression in primary human skin keratinocytes and fibroblasts in response to ionizing radiation.

Warters RL, Packard AT, Kramer GF, Gaffney DK, Moos PJ.

Radiat Res. 2009 Jul;172(1):82-95. doi: 10.1667/RR1677.1.


Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.

Bridon G, Bonneil E, Muratore-Schroeder T, Caron-Lizotte O, Thibault P.

J Proteome Res. 2012 Feb 3;11(2):927-40. doi: 10.1021/pr200722s. Epub 2011 Dec 1.


Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation.

Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioglu H, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Haghdoost S, Tapio S.

Proteomics. 2013 Apr;13(7):1096-107. doi: 10.1002/pmic.201200463. Epub 2013 Mar 4.


Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells.

Ali NA, Molloy MP.

Proteomics. 2011 Aug;11(16):3390-401. doi: 10.1002/pmic.201100036.


Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation.

Wilson PF, Nham PB, Urbin SS, Hinz JM, Jones IM, Thompson LH.

Mutat Res. 2010 Jan 5;683(1-2):91-7. doi: 10.1016/j.mrfmmm.2009.10.013. Epub .


Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M.

Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475.


Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry.

Wang X, Stewart PA, Cao Q, Sang QX, Chung LW, Emmett MR, Marshall AG.

J Proteome Res. 2011 Sep 2;10(9):3920-8. doi: 10.1021/pr2000144. Epub 2011 Jul 26.


A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments.

Casado P, Cutillas PR.

Mol Cell Proteomics. 2011 Jan;10(1):M110.003079. doi: 10.1074/mcp.M110.003079. Epub 2010 Oct 24.


Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays.

Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, Zischka H, Tapio S.

PLoS One. 2011;6(12):e27811. doi: 10.1371/journal.pone.0027811. Epub 2011 Dec 8.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk