Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 135

Similar articles for PubMed (Select 21145485)

1.

Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.

Huang L, Serganov A, Patel DJ.

Mol Cell. 2010 Dec 10;40(5):774-86. doi: 10.1016/j.molcel.2010.11.026.

2.

Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism.

Ren A, Rajashankar KR, Patel DJ.

Structure. 2015 Jun 18. pii: S0969-2126(15)00219-1. doi: 10.1016/j.str.2015.05.016. [Epub ahead of print]

PMID:
26118534
3.

Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.

Liberman JA, Suddala KC, Aytenfisu A, Chan D, Belashov IA, Salim M, Mathews DH, Spitale RC, Walter NG, Wedekind JE.

Proc Natl Acad Sci U S A. 2015 Jun 23. pii: 201503955. [Epub ahead of print]

PMID:
26106162
4.

Structures of Large RNAs and RNA-Protein Complexes: Toward Structure Determination of Riboswitches.

Grigg JC, Ke A.

Methods Enzymol. 2015;558:213-32. doi: 10.1016/bs.mie.2015.02.009. Epub 2015 Apr 1.

PMID:
26068743
5.

Structural basis for molecular discrimination by a 3',3'-cGAMP sensing riboswitch.

Ren A, Wang XC, Kellenberger CA, Rajashankar KR, Jones RA, Hammond MC, Patel DJ.

Cell Rep. 2015 Apr 7;11(1):1-12. doi: 10.1016/j.celrep.2015.03.004. Epub 2015 Mar 26.

6.

Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.

Price IR, Gaballa A, Ding F, Helmann JD, Ke A.

Mol Cell. 2015 Mar 19;57(6):1110-23. doi: 10.1016/j.molcel.2015.02.016.

PMID:
25794619
7.

Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters.

Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T, Winkler WC, Breaker RR.

Mol Cell. 2015 Mar 19;57(6):1088-98. doi: 10.1016/j.molcel.2015.02.009.

PMID:
25794617
8.

RNA quaternary structure and global symmetry.

Jones CP, Ferré-D'Amaré AR.

Trends Biochem Sci. 2015 Apr;40(4):211-20. doi: 10.1016/j.tibs.2015.02.004. Epub 2015 Mar 13. Review.

PMID:
25778613
9.

Multiple conformational states of riboswitches fine-tune gene regulation.

Fürtig B, Nozinovic S, Reining A, Schwalbe H.

Curr Opin Struct Biol. 2015 Feb;30:112-24. doi: 10.1016/j.sbi.2015.02.007. Epub 2015 Feb 27. Review.

PMID:
25727496
10.

Using reweighted pulling simulations to characterize conformational changes in riboswitches.

Di Palma F, Colizzi F, Bussi G.

Methods Enzymol. 2015;553:139-62. doi: 10.1016/bs.mie.2014.10.055. Epub 2015 Feb 3.

PMID:
25726464
11.

Kinetic regulation mechanism of pbuE riboswitch.

Gong S, Wang Y, Zhang W.

J Chem Phys. 2015 Jan 7;142(1):015103. doi: 10.1063/1.4905214.

PMID:
25573585
12.

Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site.

Chawla M, Credendino R, Poater A, Oliva R, Cavallo L.

J Am Chem Soc. 2015 Jan 14;137(1):299-306. doi: 10.1021/ja510549b. Epub 2014 Dec 23.

PMID:
25487435
13.

Methods in Enzymology. Riboswitch discovery, structure and function. Preface.

Burke-Aguero DH.

Methods Enzymol. 2014;549:xix-xxiii. doi: 10.1016/B978-0-12-801122-5.09986-4. No abstract available.

PMID:
25432763
14.

Site-directed spin-labeling strategies and electron paramagnetic resonance spectroscopy for large riboswitches.

Esquiaqui JM, Sherman EM, Ye JD, Fanucci GE.

Methods Enzymol. 2014;549:287-311. doi: 10.1016/B978-0-12-801122-5.00013-1.

PMID:
25432754
15.

Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.

Ruff KM, Strobel SA.

RNA. 2014 Nov;20(11):1775-88. doi: 10.1261/rna.047266.114. Epub 2014 Sep 22.

PMID:
25246650
16.

DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch.

Sherman EM, Elsayed G, Esquiaqui JM, Elsayed M, Brinda B, Ye JD.

J Biochem. 2014 Dec;156(6):323-31. doi: 10.1093/jb/mvu048. Epub 2014 Aug 4.

PMID:
25092436
17.

c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets.

Ren A, Patel DJ.

Nat Chem Biol. 2014 Sep;10(9):780-6. doi: 10.1038/nchembio.1606. Epub 2014 Aug 3.

18.

Structural insights into recognition of c-di-AMP by the ydaO riboswitch.

Gao A, Serganov A.

Nat Chem Biol. 2014 Sep;10(9):787-92. doi: 10.1038/nchembio.1607. Epub 2014 Aug 3.

19.

Sequence elements distal to the ligand binding pocket modulate the efficiency of a synthetic riboswitch.

Weigand JE, Gottstein-Schmidtke SR, Demolli S, Groher F, Duchardt-Ferner E, Wöhnert J, Suess B.

Chembiochem. 2014 Jul 21;15(11):1627-37. doi: 10.1002/cbic.201402067. Epub 2014 Jun 20.

PMID:
24954073
20.

The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.

Nozinovic S, Reining A, Kim YB, Noeske J, Schlepckow K, Wöhnert J, Schwalbe H.

RNA Biol. 2014;11(5):655-6. Epub 2014 Jun 12.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk