Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 119

1.

Evolution of the relaxin/insulin-like gene family in placental mammals: implications for its early evolution.

Hoffmann FG, Opazo JC.

J Mol Evol. 2011 Jan;72(1):72-9. doi: 10.1007/s00239-010-9403-6. Epub 2010 Nov 17.

PMID:
21082170
[PubMed - indexed for MEDLINE]
2.

Gene turnover and differential retention in the relaxin/insulin-like gene family in primates.

Arroyo JI, Hoffmann FG, Opazo JC.

Mol Phylogenet Evol. 2012 Jun;63(3):768-76. doi: 10.1016/j.ympev.2012.02.011. Epub 2012 Mar 1.

PMID:
22405815
[PubMed - indexed for MEDLINE]
3.

INSL4 pseudogenes help define the relaxin family repertoire in the common ancestor of placental mammals.

Arroyo JI, Hoffmann FG, Good S, Opazo JC.

J Mol Evol. 2012 Aug;75(1-2):73-8. doi: 10.1007/s00239-012-9517-0. Epub 2012 Sep 9.

PMID:
22961112
[PubMed - indexed for MEDLINE]
4.

Conserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.

Olinski RP, Lundin LG, Hallböök F.

Mol Biol Evol. 2006 Jan;23(1):10-22. Epub 2005 Aug 31.

PMID:
16135778
[PubMed - indexed for MEDLINE]
Free Article
5.

Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

Yegorov S, Good S.

PLoS One. 2012;7(3):e32923. doi: 10.1371/journal.pone.0032923. Epub 2012 Mar 21.

PMID:
22470432
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis.

Good-Avila SV, Yegorov S, Harron S, Bogerd J, Glen P, Ozon J, Wilson BC.

BMC Evol Biol. 2009 Dec 16;9:293. doi: 10.1186/1471-2148-9-293.

PMID:
20015397
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Evolution of base composition in the insulin and insulin-like growth factor genes.

Ellsworth DL, Hewett-Emmett D, Li WH.

Mol Biol Evol. 1994 Nov;11(6):875-85.

PMID:
7815927
[PubMed - indexed for MEDLINE]
8.

Three insulin-relaxin-like genes in Ciona intestinalis.

Olinski RP, Dahlberg C, Thorndyke M, Hallböök F.

Peptides. 2006 Nov;27(11):2535-46. Epub 2006 Aug 22.

PMID:
16920224
[PubMed - indexed for MEDLINE]
9.

The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.

Braasch I, Volff JN, Schartl M.

Mol Biol Evol. 2009 Apr;26(4):783-99. doi: 10.1093/molbev/msp015. Epub 2009 Jan 27.

PMID:
19174480
[PubMed - indexed for MEDLINE]
Free Article
10.

Evolution of the relaxin-like peptide family.

Wilkinson TN, Speed TP, Tregear GW, Bathgate RA.

BMC Evol Biol. 2005 Feb 12;5:14.

PMID:
15707501
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Gene duplication and positive selection explains unusual physiological roles of the relaxin gene in the European rabbit.

Arroyo JI, Hoffmann FG, Opazo JC.

J Mol Evol. 2012 Feb;74(1-2):52-60. doi: 10.1007/s00239-012-9487-2. Epub 2012 Feb 22.

PMID:
22354201
[PubMed - indexed for MEDLINE]
12.

Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.

Widmark J, Sundström G, Ocampo Daza D, Larhammar D.

Mol Biol Evol. 2011 Jan;28(1):859-71. doi: 10.1093/molbev/msq257. Epub 2010 Oct 5.

PMID:
20924084
[PubMed - indexed for MEDLINE]
Free Article
13.

Evolution of the relaxin/insulin-like gene family in anthropoid primates.

Arroyo JI, Hoffmann FG, Opazo JC.

Genome Biol Evol. 2014 Mar;6(3):491-9. doi: 10.1093/gbe/evu023.

PMID:
24493383
[PubMed - in process]
Free PMC Article
14.

A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins.

Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang G.

BMC Genomics. 2004 Aug 13;5(1):56.

PMID:
15310403
[PubMed - indexed for MEDLINE]
Free PMC Article
15.

Phylogeny, taxonomy, and evolution of the endothelin receptor gene family.

Hyndman KA, Miyamoto MM, Evans DH.

Mol Phylogenet Evol. 2009 Sep;52(3):677-87. doi: 10.1016/j.ympev.2009.04.015. Epub 2009 May 3.

PMID:
19410007
[PubMed - indexed for MEDLINE]
16.

The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula.

Shin JH, Van K, Kim DH, Kim KD, Jang YE, Choi BS, Kim MY, Lee SH.

BMC Plant Biol. 2008 Dec 23;8:133. doi: 10.1186/1471-2229-8-133.

PMID:
19105811
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Gene duplications and the origins of vertebrate development.

Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A.

Dev Suppl. 1994:125-33.

PMID:
7579513
[PubMed - indexed for MEDLINE]
18.

Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome.

Ruvinsky I, Silver LM, Gibson-Brown JJ.

Genetics. 2000 Nov;156(3):1249-57.

PMID:
11063699
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Phylogeny and regulation of four lipocalin genes clustered in the chicken genome: evidence of a functional diversification after gene duplication.

Pagano A, Giannoni P, Zambotti A, Sánchez D, Ganfornina MD, Gutiérrez G, Randazzo N, Cancedda R, Dozin B.

Gene. 2004 Apr 28;331:95-106.

PMID:
15094195
[PubMed - indexed for MEDLINE]
20.

Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.

Escriva H, Manzon L, Youson J, Laudet V.

Mol Biol Evol. 2002 Sep;19(9):1440-50.

PMID:
12200472
[PubMed - indexed for MEDLINE]
Free Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk