Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 180

1.

In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.

Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepić DP, Arsikin KM, Jovanović SP, Pantovic AC, Dramićanin MD, Trajkovic VS.

Biomaterials. 2011 Feb;32(4):1121-9. doi: 10.1016/j.biomaterials.2010.10.030. Epub 2010 Nov 10.

PMID:
21071083
2.

The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.

Marches R, Mikoryak C, Wang RH, Pantano P, Draper RK, Vitetta ES.

Nanotechnology. 2011 Mar 4;22(9):095101. doi: 10.1088/0957-4484/22/9/095101. Epub 2011 Jan 24.

PMID:
21258147
3.
4.

TiO2 nanotubes as a therapeutic agent for cancer thermotherapy.

Lee C, Hong C, Kim H, Kang J, Zheng HM.

Photochem Photobiol. 2010 Jul-Aug;86(4):981-9. doi: 10.1111/j.1751-1097.2010.00731.x. Epub 2010 Apr 16.

PMID:
20408983
5.

The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.

Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z.

Biomaterials. 2012 Mar;33(7):2206-14. doi: 10.1016/j.biomaterials.2011.11.064. Epub 2011 Dec 12.

PMID:
22169821
6.

Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy.

Meng L, Niu L, Li L, Lu Q, Fei Z, Dyson PJ.

Chemistry. 2012 Oct 15;18(42):13314-9. doi: 10.1002/chem.201201811. Epub 2012 Sep 3.

PMID:
22945763
7.

In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody.

Wang CH, Huang YJ, Chang CW, Hsu WM, Peng CA.

Nanotechnology. 2009 Aug 5;20(31):315101. doi: 10.1088/0957-4484/20/31/315101. Epub 2009 Jul 13.

PMID:
19597244
8.

Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation.

Zhang LL, Xiong Z, Zhao XS.

ACS Nano. 2010 Nov 23;4(11):7030-6. doi: 10.1021/nn102308r. Epub 2010 Oct 28.

PMID:
21028785
9.

Nanoshell-enabled photothermal cancer therapy: impending clinical impact.

Lal S, Clare SE, Halas NJ.

Acc Chem Res. 2008 Dec;41(12):1842-51. doi: 10.1021/ar800150g.

PMID:
19053240
10.

Graphene-based photothermal agent for rapid and effective killing of bacteria.

Wu MC, Deokar AR, Liao JH, Shih PY, Ling YC.

ACS Nano. 2013 Feb 26;7(2):1281-90. doi: 10.1021/nn304782d. Epub 2013 Feb 5.

PMID:
23363079
11.

Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide.

Lim DK, Barhoumi A, Wylie RG, Reznor G, Langer RS, Kohane DS.

Nano Lett. 2013 Sep 11;13(9):4075-9. doi: 10.1021/nl4014315. Epub 2013 Aug 6.

PMID:
23899267
12.

Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.

Zhou F, Wu S, Wu B, Chen WR, Xing D.

Small. 2011 Oct 4;7(19):2727-35. doi: 10.1002/smll.201100669. Epub 2011 Aug 22.

PMID:
21861293
13.

Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.

Pattani VP, Tunnell JW.

Lasers Surg Med. 2012 Oct;44(8):675-84. doi: 10.1002/lsm.22072. Epub 2012 Aug 29.

14.

Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.

Abdolahad M, Janmaleki M, Mohajerzadeh S, Akhavan O, Abbasi S.

Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33(3):1498-505. doi: 10.1016/j.msec.2012.12.052. Epub 2012 Dec 23.

PMID:
23827601
15.

Assembly of fullerene-carbon nanotubes: temperature indicator for photothermal conversion.

Shen Y, Skirtach AG, Seki T, Yagai S, Li H, Möhwald H, Nakanishi T.

J Am Chem Soc. 2010 Jun 30;132(25):8566-8. doi: 10.1021/ja1026024.

PMID:
20527750
16.

Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y.

ACS Nano. 2011 Sep 27;5(9):6971-80. doi: 10.1021/nn202451x. Epub 2011 Aug 24.

PMID:
21851105
17.

Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.

Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR.

J Biomed Opt. 2009 Mar-Apr;14(2):021009. doi: 10.1117/1.3078803.

PMID:
19405722
18.

In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.

Moon HK, Lee SH, Choi HC.

ACS Nano. 2009 Nov 24;3(11):3707-13. doi: 10.1021/nn900904h.

PMID:
19877694
19.

Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.

Hirsch A.

Angew Chem Int Ed Engl. 2009;48(36):6594-6. doi: 10.1002/anie.200902534. No abstract available.

PMID:
19582752
20.

Spontaneous formation of transition-metal nanoparticles on single-walled carbon nanotubes anchored with conjugated molecules.

Lee Y, Song HJ, Shin HS, Shin HJ, Choi HC.

Small. 2005 Oct;1(10):975-9. No abstract available.

PMID:
17193381
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk