Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 168

1.

Acclimation to high CO2 in maize is related to water status and dependent on leaf rank.

Prins A, Mukubi JM, Pellny TK, Verrier PJ, Beyene G, Lopes MS, Emami K, Treumann A, Lelarge-Trouverie C, Noctor G, Kunert KJ, Kerchev P, Foyer CH.

Plant Cell Environ. 2011 Feb;34(2):314-31. doi: 10.1111/j.1365-3040.2010.02245.x. Epub 2010 Dec 15.

2.

Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress.

Sicher RC, Barnaby JY.

Physiol Plant. 2012 Mar;144(3):238-53. doi: 10.1111/j.1399-3054.2011.01555.x. Epub 2012 Jan 14.

PMID:
22150442
3.

Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.

Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH.

J Exp Bot. 2006;57(2):381-90. Epub 2005 Dec 21.

4.

Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development.

Kakani VG, Vu JC, Allen LH Jr, Boote KJ.

J Plant Physiol. 2011 Dec 15;168(18):2169-76. doi: 10.1016/j.jplph.2011.07.003. Epub 2011 Aug 11.

PMID:
21835494
5.

Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

Leakey AD, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP.

Plant Physiol. 2006 Feb;140(2):779-90. Epub 2006 Jan 11.

6.

Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress.

del Amor FM, Cuadra-Crespo P, Walker DJ, Cámara JM, Madrid R.

J Plant Physiol. 2010 Oct 15;167(15):1232-8. doi: 10.1016/j.jplph.2010.04.010. Epub 2010 Jun 12.

PMID:
20542351
7.

Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.

Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP.

Plant Cell. 2011 Dec;23(12):4208-20. doi: 10.1105/tpc.111.090324. Epub 2011 Dec 20.

8.

Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content.

Yin X, Sun Z, Struik PC, Van der Putten PE, Van Ieperen W, Harbinson J.

Plant Cell Environ. 2011 Dec;34(12):2183-99. doi: 10.1111/j.1365-3040.2011.02414.x. Epub 2011 Sep 16.

9.

The role of transient starch in acclimation to elevated atmospheric CO2.

Ludewig F, Sonnewald U, Kauder F, Heineke D, Geiger M, Stitt M, Müller-Röber BT, Gillissen B, Kühn C, Frommer WB.

FEBS Lett. 1998 Jun 12;429(2):147-51.

10.

Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.

Hussain MZ, Vanloocke A, Siebers MH, Ruiz-Vera UM, Cody Markelz RJ, Leakey AD, Ort DR, Bernacchi CJ.

Glob Chang Biol. 2013 May;19(5):1572-84. doi: 10.1111/gcb.12155. Epub 2013 Mar 5.

PMID:
23505040
11.

Plant responses to short- and long-term exposures to high carbon dioxide levels in closed environments.

Grodzinski B, Woodrow L, Leonardos ED, Dixon M, Tsujita MJ.

Adv Space Res. 1996;18(4-5):203-11.

PMID:
11538799
12.
13.

Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.

Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber AP, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U.

BMC Genomics. 2013 Jul 3;14:442. doi: 10.1186/1471-2164-14-442.

14.

Correlation of mRNA and protein abundance in the developing maize leaf.

Ponnala L, Wang Y, Sun Q, van Wijk KJ.

Plant J. 2014 May;78(3):424-40. doi: 10.1111/tpj.12482. Epub 2014 Apr 2.

15.

The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering.

Lu HF, Dong HT, Sun CB, Qing DJ, Li N, Wu ZK, Wang ZQ, Li YZ.

Theor Appl Genet. 2011 Oct;123(6):943-58. doi: 10.1007/s00122-011-1638-0. Epub 2011 Jul 7.

PMID:
21735236
16.

Impairment of C(4) photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO(2)] in maize.

Markelz RJ, Strellner RS, Leakey AD.

J Exp Bot. 2011 May;62(9):3235-46. doi: 10.1093/jxb/err056. Epub 2011 Mar 11.

17.

Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration.

Frak E, Le Roux X, Millard P, Adam B, Dreyer E, Escuit C, Sinoquet H, Vandame M, Varlet-Grancher C.

J Exp Bot. 2002 Nov;53(378):2207-16.

18.
19.

High glycolate oxidase activity is required for survival of maize in normal air.

Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP.

Plant Physiol. 2009 Jan;149(1):195-204. doi: 10.1104/pp.108.128439. Epub 2008 Sep 19.

20.

Does growth under elevated CO₂ moderate photoacclimation in rice?

Hubbart S, Bird S, Lake JA, Murchie EH.

Physiol Plant. 2013 Jun;148(2):297-306. doi: 10.1111/j.1399-3054.2012.01702.x. Epub 2012 Oct 26.

PMID:
23020599
Items per page

Supplemental Content

Write to the Help Desk