Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 145

Similar articles for PubMed (Select 20952651)

1.

Effects of engineered cerium oxide nanoparticles on bacterial growth and viability.

Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ.

Appl Environ Microbiol. 2010 Dec;76(24):7981-9. doi: 10.1128/AEM.00650-10. Epub 2010 Oct 15.

2.

Bacterial Acclimation Inside an Aqueous Battery.

Dong D, Chen B, Chen P.

PLoS One. 2015 Jun 12;10(6):e0129130. doi: 10.1371/journal.pone.0129130. eCollection 2015.

3.

Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles.

Szymanski CJ, Munusamy P, Mihai C, Xie Y, Hu D, Gilles MK, Tyliszczak T, Thevuthasan S, Baer DR, Orr G.

Biomaterials. 2015 Sep;62:147-54. doi: 10.1016/j.biomaterials.2015.05.042. Epub 2015 May 28.

PMID:
26056725
4.

[Selective-differential nutrient medium "Shewanella IRHLS agar" for isolation of Shewanella genus bacteria].

Sivolodsky EP.

Zh Mikrobiol Epidemiol Immunobiol. 2015 Mar-Apr;(2):46-9. Russian.

PMID:
26016343
5.

Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

Singh R, Singh S.

Colloids Surf B Biointerfaces. 2015 Aug 1;132:78-84. doi: 10.1016/j.colsurfb.2015.05.005. Epub 2015 May 16.

PMID:
26011425
6.

Inclusion bodies and pH lowering: as an effect of gold nanoparticles in Streptococcus pneumoniae.

Ortiz-Benitez EA, Carrillo-Morales M, Velázquez-Guadarrama N, Fandiño-Armas J, Olivares-Trejo JJ.

Metallomics. 2015 May 12. [Epub ahead of print]

PMID:
25966022
7.

The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle.

Arakha M, Saleem M, Mallick BC, Jha S.

Sci Rep. 2015 Apr 15;5:9578. doi: 10.1038/srep09578.

8.

Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

Dahle JT, Arai Y.

Int J Environ Res Public Health. 2015 Jan 23;12(2):1253-78. doi: 10.3390/ijerph120201253.

9.

Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

Zhang W, Ebbs SD, Musante C, White JC, Gao C, Ma X.

J Agric Food Chem. 2015 Jan 21;63(2):382-90. doi: 10.1021/jf5052442. Epub 2015 Jan 7.

PMID:
25531028
10.

Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles.

Babu KS, Anandkumar M, Tsai TY, Kao TH, Inbaraj BS, Chen BH.

Int J Nanomedicine. 2014 Nov 27;9:5515-31. doi: 10.2147/IJN.S70087. eCollection 2014.

11.

Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products.

Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, Thomas T, Demokritou P.

Nanotoxicology. 2014 Nov 11:1-9. [Epub ahead of print]

PMID:
25387251
12.

Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.

Alaraby M, Hernández A, Annangi B, Demir E, Bach J, Rubio L, Creus A, Marcos R.

Nanotoxicology. 2014 Oct 31:1-11. [Epub ahead of print]

PMID:
25358738
13.

Spot the difference: engineered and natural nanoparticles in the environment--release, behavior, and fate.

Wagner S, Gondikas A, Neubauer E, Hofmann T, von der Kammer F.

Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12398-419. doi: 10.1002/anie.201405050. Epub 2014 Oct 27.

PMID:
25348500
14.

Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles.

Situ SF, Samia AC.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20154-63. doi: 10.1021/am505744m. Epub 2014 Oct 27.

PMID:
25347201
15.

From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.

Sizochenko N, Rasulev B, Gajewicz A, Kuz'min V, Puzyn T, Leszczynski J.

Nanoscale. 2014 Nov 21;6(22):13986-93. doi: 10.1039/c4nr03487b.

PMID:
25317542
16.

Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts.

Djurišić AB, Leung YH, Ng AM, Xu XY, Lee PK, Degger N, Wu RS.

Small. 2015 Jan 7;11(1):26-44. doi: 10.1002/smll.201303947. Epub 2014 Oct 9.

PMID:
25303765
17.

Pharmacological potential of bioactive engineered nanomaterials.

Caputo F, De Nicola M, Ghibelli L.

Biochem Pharmacol. 2014 Nov 1;92(1):112-30. doi: 10.1016/j.bcp.2014.08.015. Epub 2014 Aug 28. Review.

PMID:
25175739
18.

A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles.

Pan H, Zhang Y, He GX, Katagori N, Chen H.

BMC Microbiol. 2014 Aug 21;14:222. doi: 10.1186/s12866-014-0222-6.

19.

Nanoparticles in fuel additives associated with liver damage.

[No authors listed]

W V Med J. 2012 Jan-Feb;108(1):44. No abstract available.

PMID:
25134196
20.

High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology.

Pal AK, Aalaei I, Gadde S, Gaines P, Schmidt D, Demokritou P, Bello D.

ACS Nano. 2014 Sep 23;8(9):9003-15. doi: 10.1021/nn502219q. Epub 2014 Aug 25.

PMID:
25093451
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk