Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Proteomic analysis of the insoluble subproteome of Clostridium difficile strain 630.

Jain S, Graham RL, McMullan G, Ternan NG.

FEMS Microbiol Lett. 2010 Nov;312(2):151-9. doi: 10.1111/j.1574-6968.2010.02111.x. Epub 2010 Sep 24.

2.

Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630.

Jain S, Graham C, Graham RL, McMullan G, Ternan NG.

J Proteome Res. 2011 Sep 2;10(9):3880-90. doi: 10.1021/pr200327t. Epub 2011 Aug 8.

PMID:
21786815
3.

Multidimensional proteomic analysis of the soluble subproteome of the emerging nosocomial pathogen Ochrobactrum anthropi.

Graham RL, Pollock CE, O'Loughlin SN, Ternan NG, Weatherly DB, Jackson PJ, Tarleton RL, McMullan G.

J Proteome Res. 2006 Nov;5(11):3145-53.

PMID:
17081066
4.

Microarray identification of Clostridium difficile core components and divergent regions associated with host origin.

Janvilisri T, Scaria J, Thompson AD, Nicholson A, Limbago BM, Arroyo LG, Songer JG, Gröhn YT, Chang YF.

J Bacteriol. 2009 Jun;191(12):3881-91. doi: 10.1128/JB.00222-09. Epub 2009 Apr 17.

5.

Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.

Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G.

J Bacteriol. 2009 Sep;191(17):5377-86. doi: 10.1128/JB.00597-09. Epub 2009 Jun 19.

6.

Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield.

Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y.

J Proteome Res. 2010 Jun 4;9(6):3046-61. doi: 10.1021/pr9012078.

PMID:
20426490
7.
8.

Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole.

Chong PM, Lynch T, McCorrister S, Kibsey P, Miller M, Gravel D, Westmacott GR, Mulvey MR; Canadian Nosocomial Infection Surveillance Program (CNISP).

PLoS One. 2014 Jan 6;9(1):e82622. doi: 10.1371/journal.pone.0082622. eCollection 2014.

9.

Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation.

Ternan NG, Jain S, Graham RL, McMullan G.

PLoS One. 2014 Feb 24;9(2):e88960. doi: 10.1371/journal.pone.0088960. eCollection 2014. Erratum in: PLoS One. 2014;9(5):e97413.

10.

Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism.

Pettit LJ, Browne HP, Yu L, Smits WK, Fagan RP, Barquist L, Martin MJ, Goulding D, Duncan SH, Flint HJ, Dougan G, Choudhary JS, Lawley TD.

BMC Genomics. 2014 Feb 25;15:160. doi: 10.1186/1471-2164-15-160.

11.

A combined shotgun and multidimensional proteomic analysis of the insoluble subproteome of the obligate thermophile, Geobacillus thermoleovorans T80.

Graham RL, O'Loughlin SN, Pollock CE, Ternan NG, Weatherly DB, Jackson PJ, Tarleton RL, McMullan G.

J Proteome Res. 2006 Sep;5(9):2465-73.

PMID:
16944960
12.

Pseudomembranous colitis caused by toxin A-negative/toxin B-positive variant strain of Clostridium difficile.

Toyokawa M, Ueda A, Tsukamoto H, Nishi I, Horikawa M, Sunada A, Asari S.

J Infect Chemother. 2003 Dec;9(4):351-4.

PMID:
14691659
13.

Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity.

Dhalluin A, Bourgeois I, Pestel-Caron M, Camiade E, Raux G, Courtin P, Chapot-Chartier MP, Pons JL.

Microbiology. 2005 Jul;151(Pt 7):2343-51.

PMID:
16000724
14.

Molecular characterization of the surface layer proteins from Clostridium difficile.

Calabi E, Ward S, Wren B, Paxton T, Panico M, Morris H, Dell A, Dougan G, Fairweather N.

Mol Microbiol. 2001 Jun;40(5):1187-99.

15.

Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.

Gaucher SP, Redding AM, Mukhopadhyay A, Keasling JD, Singh AK.

J Proteome Res. 2008 Jun;7(6):2320-31. doi: 10.1021/pr700772s. Epub 2008 Apr 17.

PMID:
18416566
16.

Mass spectrometric analysis of the S-layer proteins from Clostridium difficile demonstrates the absence of glycosylation.

Qazi O, Hitchen P, Tissot B, Panico M, Morris HR, Dell A, Fairweather N.

J Mass Spectrom. 2009 Mar;44(3):368-74. doi: 10.1002/jms.1514.

PMID:
18932172
17.

Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile.

Karjalainen T, Waligora-Dupriet AJ, Cerquetti M, Spigaglia P, Maggioni A, Mauri P, Mastrantonio P.

Infect Immun. 2001 May;69(5):3442-6.

18.

Identification of toxigenic Clostridium difficile by the polymerase chain reaction.

Kato N, Ou CY, Kato H, Bartley SL, Brown VK, Dowell VR Jr, Ueno K.

J Clin Microbiol. 1991 Jan;29(1):33-7.

19.

Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria.

Lo I, Denef VJ, Verberkmoes NC, Shah MB, Goltsman D, DiBartolo G, Tyson GW, Allen EE, Ram RJ, Detter JC, Richardson P, Thelen MP, Hettich RL, Banfield JF.

Nature. 2007 Mar 29;446(7135):537-41. Epub 2007 Mar 7.

PMID:
17344860
20.

Proteomic analysis of cell surface proteins from Clostridium difficile.

Wright A, Wait R, Begum S, Crossett B, Nagy J, Brown K, Fairweather N.

Proteomics. 2005 Jun;5(9):2443-52.

PMID:
15887182
Items per page

Supplemental Content

Write to the Help Desk