Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison.

Yang GZ, Dong BZ, Gu BY, Zhuang JY, Ersoy OK.

Appl Opt. 1994 Jan 10;33(2):209-18. doi: 10.1364/AO.33.000209.

PMID:
20862010
2.

Gerchberg-Saxton algorithm applied to a translational-variant optical setup.

Amézquita-Orozco R, Mejía-Barbosa Y.

Opt Express. 2013 Aug 12;21(16):19128-34. doi: 10.1364/OE.21.019128.

PMID:
23938827
3.

Algorithm based on rigorous coupled-wave analysis for diffractive optical element design.

Chang NY, Kuo CJ.

J Opt Soc Am A Opt Image Sci Vis. 2001 Oct;18(10):2491-501.

PMID:
11583266
4.

Diffractive phase elements for beam shaping: a new design method.

Tan X, Gu BY, Yang GZ, Dong BZ.

Appl Opt. 1995 Mar 10;34(8):1314-20. doi: 10.1364/AO.34.001314.

PMID:
21037662
5.
6.

Phase retrieval algorithms: a comparison.

Fienup JR.

Appl Opt. 1982 Aug 1;21(15):2758-69. doi: 10.1364/AO.21.002758.

PMID:
20396114
7.

Image reconstruction for in-line holography with the Yang-Gu algorithm.

Zhang Y, Pedrini G, Osten W, Tiziani HJ.

Appl Opt. 2003 Nov 10;42(32):6452-7.

PMID:
14650487
8.

Multi-stage phase retrieval algorithm based upon the gyrator transform.

Rodrigo JA, Duadi H, Alieva T, Zalevsky Z.

Opt Express. 2010 Jan 18;18(2):1510-20. doi: 10.1364/OE.18.001510.

PMID:
20173979
9.

Methods for reconstruction of 2-D sequences from Fourier transform magnitude.

Zou MY, Unbehauen R.

IEEE Trans Image Process. 1997;6(2):222-33.

PMID:
18276204
10.

Legacies of the Gerchberg-Saxton algorithm.

Fiddy MA, Shahid U.

Ultramicroscopy. 2013 Nov;134:48-54. doi: 10.1016/j.ultramic.2013.05.009. Epub 2013 Jun 2.

PMID:
23820596
11.

Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain.

Hwang HE, Chang HT, Lie WN.

Opt Lett. 2009 Dec 15;34(24):3917-9. doi: 10.1364/OL.34.003917.

PMID:
20016657
12.

Image encryption by encoding with a nonuniform optical beam in gyrator transform domains.

Liu Z, Xu L, Lin C, Liu S.

Appl Opt. 2010 Oct 10;49(29):5632-7. doi: 10.1364/AO.49.005632.

PMID:
20935710
13.

Phase retrieval from intensity-only data by relative entropy minimization.

Deming RW.

J Opt Soc Am A Opt Image Sci Vis. 2007 Nov;24(11):3666-79.

PMID:
17975593
14.
15.

Overcoming the limitation of phase retrieval using Gerchberg-Saxton-like algorithm in optical fiber time-stretch systems.

Xu Y, Ren Z, Wong KK, Tsia K.

Opt Lett. 2015 Aug 1;40(15):3595-8. doi: 10.1364/OL.40.003595.

PMID:
26258366
16.

Discrete reconstruction of real phase objects: a comparison with computer-simulated phase objects.

Fiadeiro PT, Emmony DC.

Appl Opt. 1995 Nov 10;34(32):7460-7. doi: 10.1364/AO.34.007460.

PMID:
21060620
17.

A comparison of iterative algorithms and a mixed approach for in-line x-ray phase retrieval.

Meng F, Zhang D, Wu X, Liu H.

Opt Commun. 2009 Aug 15;282(16):3392-3396.

18.

Fresnel domain nonlinear optical image encryption scheme based on Gerchberg-Saxton phase-retrieval algorithm.

Rajput SK, Nishchal NK.

Appl Opt. 2014 Jan 20;53(3):418-25. doi: 10.1364/AO.53.000418.

PMID:
24514127
19.

Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm.

Chang C, Xia J, Yang L, Lei W, Yang Z, Chen J.

Appl Opt. 2015 Aug 10;54(23):6994-7001. doi: 10.1364/AO.54.006994.

PMID:
26368366
20.

Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm.

Liu W, Liu Z, Liu S.

Opt Lett. 2013 May 15;38(10):1651-3. doi: 10.1364/OL.38.001651.

PMID:
23938899
Items per page

Supplemental Content

Write to the Help Desk