Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Double-integrating-sphere system for measuring the optical properties of tissue.

Pickering JW, Prahl SA, van Wieringen N, Beek JF, Sterenborg HJ, van Gemert MJ.

Appl Opt. 1993 Feb 1;32(4):399-410. doi: 10.1364/AO.32.000399.

PMID:
20802704
2.

Optical properties of normal and carcinomatous bronchial tissue.

Qu J, Macaulay C, Lam S, Palcic B.

Appl Opt. 1994 Nov 1;33(31):7397-405. doi: 10.1364/AO.33.007397.

PMID:
20941301
3.

Effect of light losses of sample between two integrating spheres on optical properties estimation.

Zhu D, Lu W, Zeng S, Luo Q.

J Biomed Opt. 2007 Nov-Dec;12(6):064004. doi: 10.1117/1.2815691.

PMID:
18163820
4.

Changes in the optical properties (at 632.8 nm) of slowly heated myocardium.

Pickering JW, Bosman S, Posthumus P, Blokland P, Beek JF, van Gemert MJ.

Appl Opt. 1993 Feb 1;32(4):367-71. doi: 10.1364/AO.32.000367.

PMID:
20802699
5.

Determining the optical properties of turbid mediaby using the adding-doubling method.

Prahl SA, van Gemert MJ, Welch AJ.

Appl Opt. 1993 Feb 1;32(4):559-68. doi: 10.1364/AO.32.000559.

PMID:
20802725
6.

Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements.

Yaroslavsky IV, Yaroslavsky AN, Goldbach T, Schwarzmaier HJ.

Appl Opt. 1996 Dec 1;35(34):6797-809. doi: 10.1364/AO.35.006797.

PMID:
21151265
7.

Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.

Thennadil SN, Chen YC.

Appl Spectrosc. 2016 Aug 29. pii: 0003702816665124. [Epub ahead of print]

PMID:
27572632
8.

In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm.

Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJ, van Gemert MJ.

Phys Med Biol. 1997 Nov;42(11):2255-61.

PMID:
9394410
9.
10.
11.

Optical characterization of melanin.

Sardar DK, Mayo ML, Glickman RD.

J Biomed Opt. 2001 Oct;6(4):404-11.

PMID:
11728198
12.
13.

In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.

Gebhart SC, Lin WC, Mahadevan-Jansen A.

Phys Med Biol. 2006 Apr 21;51(8):2011-27. Epub 2006 Mar 30.

PMID:
16585842
14.

Potential of a spectroscopic measurement method using adding-doubling to retrieve the bulk optical properties of dense microalgal media.

Bellini S, Bendoula R, Latrille E, Roger JM.

Appl Spectrosc. 2014;68(10):1154-67. doi: 10.1366/13-07308. Epub 2014 Oct 1.

PMID:
25198389
15.

Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver.

Pickering JW, Posthumus P, van Gemert MJ.

Lasers Surg Med. 1994;15(2):200-5.

PMID:
7799744
16.

Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements.

Dam JS, Dalgaard T, Fabricius PE, Andersson-Engels S.

Appl Opt. 2000 Mar 1;39(7):1202-9.

PMID:
18338004
17.

Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm.

Saeys W, Velazco-Roa MA, Thennadil SN, Ramon H, Nicolaï BM.

Appl Opt. 2008 Mar 1;47(7):908-19.

PMID:
18311262
18.

Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.

Fang ZH, Fu XP, He XM.

J Zhejiang Univ Sci B. 2016 Jun;17(6):484-92. doi: 10.1631/jzus.B1500086.

19.

Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.

Yaroslavsky AN, Yaroslavsky IV, Goldbach T, Schwarzmaier HJ.

J Biomed Opt. 1999 Jan;4(1):47-53.

PMID:
23015169
20.

Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.

Dzhongova E, Harwood CR, Thennadil SN.

Appl Spectrosc. 2009 Jan;63(1):25-32. doi: 10.1366/000370209787169777.

PMID:
19146716
Items per page

Supplemental Content

Write to the Help Desk