Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 178

1.

Bioactivation of porous polyurethane scaffolds using fluorinated RGD surface modifiers.

Blit PH, Shen YH, Ernsting MJ, Woodhouse KA, Santerre JP.

J Biomed Mater Res A. 2010 Sep 15;94(4):1226-35. doi: 10.1002/jbm.a.32804.

PMID:
20694989
[PubMed - indexed for MEDLINE]
2.

Human monocyte adhesion onto RGD and PHSRN peptides delivered to the surface of a polycarbonate polyurethane using bioactive fluorinated surface modifiers.

Ernsting MJ, Labow RS, Santerre JP.

J Biomed Mater Res A. 2007 Dec 1;83(3):759-69.

PMID:
17559113
[PubMed - indexed for MEDLINE]
3.

Generation of cell adhesive substrates using peptide fluoralkyl surface modifiers.

Ernsting MJ, Bonin GC, Yang M, Labow RS, Santerre JP.

Biomaterials. 2005 Nov;26(33):6536-46.

PMID:
15993486
[PubMed - indexed for MEDLINE]
4.

Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds.

Grenier S, Sandig M, Holdsworth DW, Mequanint K.

J Biomed Mater Res A. 2009 May;89(2):293-303. doi: 10.1002/jbm.a.31972.

PMID:
18431771
[PubMed - indexed for MEDLINE]
5.

Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors.

Seifu DG, Isimjan TT, Mequanint K.

Acta Biomater. 2011 Oct;7(10):3670-8. doi: 10.1016/j.actbio.2011.06.010. Epub 2011 Jun 13.

PMID:
21704199
[PubMed - indexed for MEDLINE]
6.

The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds.

Zhang H, Lin CY, Hollister SJ.

Biomaterials. 2009 Sep;30(25):4063-9. doi: 10.1016/j.biomaterials.2009.04.015. Epub 2009 May 31.

PMID:
19487019
[PubMed - indexed for MEDLINE]
7.

Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.

Eglin D, Grad S, Gogolewski S, Alini M.

J Biomed Mater Res A. 2010 Jan;92(1):393-408. doi: 10.1002/jbm.a.32385.

PMID:
19191318
[PubMed - indexed for MEDLINE]
8.

Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro.

Hu Y, Winn SR, Krajbich I, Hollinger JO.

J Biomed Mater Res A. 2003 Mar 1;64(3):583-90.

PMID:
12579573
[PubMed - indexed for MEDLINE]
9.

Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells.

Grenier S, Sandig M, Mequanint K.

J Biomed Mater Res A. 2007 Sep 15;82(4):802-9.

PMID:
17326143
[PubMed - indexed for MEDLINE]
10.

Surface immobilization of elastin-like polypeptides using fluorinated surface modifying additives.

Blit PH, Battiston KG, Woodhouse KA, Santerre JP.

J Biomed Mater Res A. 2011 Mar 15;96(4):648-62. doi: 10.1002/jbm.a.33022. Epub 2011 Jan 25.

PMID:
21268240
[PubMed - indexed for MEDLINE]
11.

[Impact of immobilized RGD peptides on cell attachment of decellularized valve scaffolds].

Shi J, Dong N, Sun Z.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Apr;25(2):388-92. Chinese.

PMID:
18610628
[PubMed - indexed for MEDLINE]
12.

Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides.

Lin HB, Sun W, Mosher DF, García-Echeverría C, Schaufelberger K, Lelkes PI, Cooper SL.

J Biomed Mater Res. 1994 Mar;28(3):329-42.

PMID:
8077248
[PubMed - indexed for MEDLINE]
13.

Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification.

Lan PX, Lee JW, Seol YJ, Cho DW.

J Mater Sci Mater Med. 2009 Jan;20(1):271-9. doi: 10.1007/s10856-008-3567-2. Epub 2008 Sep 3.

PMID:
18763023
[PubMed - indexed for MEDLINE]
14.

Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.

Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J.

Colloids Surf B Biointerfaces. 2009 Nov 1;74(1):159-66. doi: 10.1016/j.colsurfb.2009.07.012. Epub 2009 Jul 22.

PMID:
19679453
[PubMed - indexed for MEDLINE]
15.

Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.

Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, Fu Q.

J Biomater Sci Polym Ed. 2010;21(12):1637-52. doi: 10.1163/092050609X12525750021270. Epub 2010 Jun 9.

PMID:
20537246
[PubMed - indexed for MEDLINE]
16.

[Surface modification of RGD peptides onto acellularized porcine aortic valve to promote cell adhesion].

Guo LM, Zeng XF, Ma RD, Shang GS, Hao M, Yi DH.

Sichuan Da Xue Xue Bao Yi Xue Ban. 2010 Nov;41(6):1008-11, 1054. Chinese.

PMID:
21265104
[PubMed - indexed for MEDLINE]
17.

Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation.

Yang L, Kandel RA, Chang G, Santerre JP.

J Biomed Mater Res A. 2009 Dec 15;91(4):1089-99. doi: 10.1002/jbm.a.32331.

PMID:
19107787
[PubMed - indexed for MEDLINE]
18.

Electrospun elastin-like polypeptide enriched polyurethanes and their interactions with vascular smooth muscle cells.

Blit PH, Battiston KG, Yang M, Paul Santerre J, Woodhouse KA.

Acta Biomater. 2012 Jul;8(7):2493-503. doi: 10.1016/j.actbio.2012.03.032. Epub 2012 Mar 27.

PMID:
22459513
[PubMed - indexed for MEDLINE]
19.

Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.

Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, Hutmacher DW.

Tissue Eng Part A. 2009 Oct;15(10):3013-24. doi: 10.1089/ten.TEA.2008.0355.

PMID:
19331580
[PubMed - indexed for MEDLINE]
20.

Co-culturing monocytes with smooth muscle cells improves cell distribution within a degradable polyurethane scaffold and reduces inflammatory cytokines.

McBane JE, Cai K, Labow RS, Santerre JP.

Acta Biomater. 2012 Feb;8(2):488-501. doi: 10.1016/j.actbio.2011.09.018. Epub 2011 Sep 22.

PMID:
21971418
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk