Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 234

Similar articles for PubMed (Select 20652356)

1.

Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P, Jiang XH, Zhao YH.

J Ind Microbiol Biotechnol. 2011 Mar;38(3):415-22. doi: 10.1007/s10295-010-0784-8. Epub 2010 Jul 22.

PMID:
20652356
2.

Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance.

Wei P, Li Z, He P, Lin Y, Jiang N.

Biotechnol Appl Biochem. 2008 Feb;49(Pt 2):113-20.

PMID:
17630953
3.

Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.

Hou L.

Appl Biochem Biotechnol. 2010 Feb;160(4):1084-93. doi: 10.1007/s12010-009-8552-9. Epub 2009 Feb 13.

PMID:
19214789
4.

The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.

Wang PM, Zheng DQ, Liu TZ, Tao XL, Feng MG, Min H, Jiang XH, Wu XC.

Bioresour Technol. 2012 Mar;108:203-10. doi: 10.1016/j.biortech.2011.12.147. Epub 2012 Jan 8.

PMID:
22269055
5.

Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae.

Shi DJ, Wang CL, Wang KM.

J Ind Microbiol Biotechnol. 2009 Jan;36(1):139-47. doi: 10.1007/s10295-008-0481-z. Epub 2008 Oct 10.

PMID:
18846398
6.

Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.

Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR.

Biotechnol Lett. 2011 Feb;33(2):277-84. doi: 10.1007/s10529-010-0433-3. Epub 2010 Oct 16.

PMID:
20953665
7.

Novel methods of genome shuffling in Saccharomyces cerevisiae.

Hou L.

Biotechnol Lett. 2009 May;31(5):671-7. doi: 10.1007/s10529-009-9916-5. Epub 2009 Jan 20.

PMID:
19153667
8.

Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations.

Santos J, Sousa MJ, Cardoso H, Inácio J, Silva S, Spencer-Martins I, Leão C.

Microbiology. 2008 Feb;154(Pt 2):422-30. doi: 10.1099/mic.0.2007/011445-0.

PMID:
18227246
9.

Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling.

Bajwa PK, Pinel D, Martin VJ, Trevors JT, Lee H.

J Microbiol Methods. 2010 May;81(2):179-86. doi: 10.1016/j.mimet.2010.03.009. Epub 2010 Mar 16.

PMID:
20298725
10.

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

Mira NP, Palma M, Guerreiro JF, Sá-Correia I.

Microb Cell Fact. 2010 Oct 25;9:79. doi: 10.1186/1475-2859-9-79.

11.

Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors.

Lu Y, Cheng YF, He XP, Guo XN, Zhang BR.

J Ind Microbiol Biotechnol. 2012 Jan;39(1):73-80. doi: 10.1007/s10295-011-1001-0. Epub 2011 Jun 23.

PMID:
21698486
12.

Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification.

Luhe AL, Tan L, Wu J, Zhao H.

Biotechnol Lett. 2011 May;33(5):1007-11. doi: 10.1007/s10529-011-0518-7. Epub 2011 Jan 19.

PMID:
21246255
13.

A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

Tao X, Zheng D, Liu T, Wang P, Zhao W, Zhu M, Jiang X, Zhao Y, Wu X.

PLoS One. 2012;7(2):e31235. doi: 10.1371/journal.pone.0031235. Epub 2012 Feb 17.

14.

Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.

Casey E, Sedlak M, Ho NW, Mosier NS.

FEMS Yeast Res. 2010 Jun;10(4):385-93. doi: 10.1111/j.1567-1364.2010.00623.x. Epub 2010 Mar 10.

15.

Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.

Narendranath NV, Thomas KC, Ingledew WM.

J Ind Microbiol Biotechnol. 2001 Mar;26(3):171-7.

PMID:
11420658
16.

Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor.

Pinel D, D'Aoust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJ.

Appl Environ Microbiol. 2011 Jul;77(14):4736-43. doi: 10.1128/AEM.02769-10. Epub 2011 May 27.

17.

Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance.

Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH.

Bioresour Technol. 2011 Feb;102(3):3020-7. doi: 10.1016/j.biortech.2010.09.122. Epub 2010 Oct 8.

PMID:
20980141
18.

Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.

Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I.

Appl Environ Microbiol. 2009 Sep;75(18):5761-72. doi: 10.1128/AEM.00845-09. Epub 2009 Jul 24.

19.

Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.

Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ.

FEMS Yeast Res. 2011 May;11(3):299-306. doi: 10.1111/j.1567-1364.2011.00719.x. Epub 2011 Feb 14.

20.

Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.

Wei P, Li Z, Lin Y, He P, Jiang N.

Biotechnol Lett. 2007 Oct;29(10):1501-8. Epub 2007 May 31.

PMID:
17541503
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk