Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 143

1.

Design of highly transparent glasses with broadband antireflective subwavelength structures.

Song YM, Choi HJ, Yu JS, Lee YT.

Opt Express. 2010 Jun 7;18(12):13063-71. doi: 10.1364/OE.18.013063.

PMID:
20588436
[PubMed]
2.

Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.

Park GC, Song YM, Ha JH, Lee YT.

J Nanosci Nanotechnol. 2011 Jul;11(7):6152-6.

PMID:
22121676
[PubMed]
3.

Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures.

Song YM, Choi ES, Yu JS, Lee YT.

Opt Express. 2009 Nov 9;17(23):20991-7. doi: 10.1364/OE.17.020991.

PMID:
19997337
[PubMed]
4.

Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.

Joo DH, Leem JW, Yu JS.

J Nanosci Nanotechnol. 2011 Nov;11(11):10130-5.

PMID:
22413355
[PubMed]
5.

Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.

Ji S, Park J, Lim H.

Nanoscale. 2012 Aug 7;4(15):4603-10. doi: 10.1039/c2nr30787a. Epub 2012 Jun 18.

PMID:
22706661
[PubMed - indexed for MEDLINE]
6.

Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures.

Tan CL, Jang SJ, Lee YT.

Opt Express. 2012 Jul 30;20(16):17448-55. doi: 10.1364/OE.20.017448.

PMID:
23038297
[PubMed]
7.

Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings.

Ko YH, Yu JS.

Opt Express. 2011 Jan 3;19(1):297-305. doi: 10.1364/OE.19.000297.

PMID:
21263569
[PubMed]
8.

Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells.

Leem JW, Song YM, Yu JS.

Opt Express. 2011 Sep 12;19 Suppl 5:A1155-64. doi: 10.1364/OE.19.0A1155.

PMID:
21935259
[PubMed]
9.

Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations.

Lehr D, Helgert M, Sundermann M, Morhard C, Pacholski C, Spatz JP, Brunner R.

Opt Express. 2010 Nov 8;18(23):23878-90. doi: 10.1364/OE.18.023878.

PMID:
21164733
[PubMed]
10.

Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range.

Schulze M, Lehr D, Helgert M, Kley EB, Tünnermann A.

Opt Lett. 2011 Oct 1;36(19):3924-6. doi: 10.1364/OL.36.003924.

PMID:
21964143
[PubMed]
11.

Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications.

Leem JW, Song YM, Yu JS.

Opt Express. 2011 Dec 19;19(27):26308-17. doi: 10.1364/OE.19.026308.

PMID:
22274215
[PubMed - indexed for MEDLINE]
12.

Antireflective grassy surface on glass substrates with self-masked dry etching.

Song YM, Park GC, Kang EK, Yeo CI, Lee YT.

Nanoscale Res Lett. 2013 Dec 1;8(1):505. doi: 10.1186/1556-276X-8-505.

PMID:
24289255
[PubMed]
Free Article
13.

Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.

Leem JW, Yu JS.

J Nanosci Nanotechnol. 2012 Oct;12(10):7932-8.

PMID:
23421159
[PubMed - indexed for MEDLINE]
14.

Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.

Song YM, Jeong Y, Yeo CI, Lee YT.

Opt Express. 2012 Nov 5;20 Suppl 6:A916-23. doi: 10.1364/OE.20.00A916.

PMID:
23187668
[PubMed]
15.

Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications.

Choi ES, Song YM, Park GC, Lee YT.

J Nanosci Nanotechnol. 2011 Feb;11(2):1342-5.

PMID:
21456184
[PubMed]
16.

Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns.

Leem JW, Yeh Y, Yu JS.

Opt Express. 2012 Feb 13;20(4):4056-66. doi: 10.1364/OE.20.004056.

PMID:
22418164
[PubMed]
17.

Transmittance enhancement of sapphires with antireflective subwavelength grating patterned UV polymer surface structures by soft lithography.

Lee SH, Leem JW, Yu JS.

Opt Express. 2013 Dec 2;21(24):29298-303. doi: 10.1364/OE.21.029298.

PMID:
24514482
[PubMed - in process]
18.

Guidelines for 1D-periodic surface microstructures for antireflective lenses.

Søndergaard T, Gadegaard J, Kristensen PK, Jensen TK, Pedersen TG, Pedersen K.

Opt Express. 2010 Dec 6;18(25):26245-58. doi: 10.1364/OE.18.026245.

PMID:
21164973
[PubMed - indexed for MEDLINE]
19.

Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.

Song YM, Jeong Y, Yeo CI, Lee YT.

Opt Express. 2012 Nov 5;20(23):A916-23.

PMID:
23326839
[PubMed - indexed for MEDLINE]
20.

Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis.

Nakagawa W, Tyan RC, Sun PC, Xu F, Fainman Y.

J Opt Soc Am A Opt Image Sci Vis. 2001 May;18(5):1072-81.

PMID:
11336210
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk