Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces.

Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C.

Plant Cell. 2010 Jun;22(6):1686-701. doi: 10.1105/tpc.110.074187. Epub 2010 Jun 25.

2.

A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat.

Rustenholz C, Choulet F, Laugier C, Safár J, Simková H, Dolezel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S, Bellec A, Bergès H, Feuillet C, Paux E.

Plant Physiol. 2011 Dec;157(4):1596-608. doi: 10.1104/pp.111.183921. Epub 2011 Oct 27.

3.

Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice.

Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J.

Mol Genet Genomics. 2004 May;271(4):377-86. Epub 2004 Mar 11.

PMID:
15014981
4.

Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat.

Sehgal SK, Li W, Rabinowicz PD, Chan A, Simková H, Doležel J, Gill BS.

BMC Plant Biol. 2012 May 4;12:64. doi: 10.1186/1471-2229-12-64.

5.

Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B.

Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C.

Plant J. 2006 Nov;48(3):463-74. Epub 2006 Sep 29.

7.

Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution.

Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B.

Plant J. 2001 May;26(3):307-16.

8.

Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat.

Bartoš J, Vlček C, Choulet F, Džunková M, Cviková K, Safář J, Simková H, Pačes J, Strnad H, Sourdille P, Bergès H, Cattonaro F, Feuillet C, Doležel J.

BMC Plant Biol. 2012 Aug 30;12:155.

9.

Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations.

Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B, Leroy P, Sourdille P, Bernard M.

Mol Genet Genomics. 2005 Sep;274(2):119-30. Epub 2005 Oct 11.

PMID:
16034625
10.

Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat.

Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ.

Plant Mol Biol. 2009 May;70(1-2):47-61. doi: 10.1007/s11103-009-9456-3. Epub 2009 Jan 29.

PMID:
19184460
11.

Computational finishing of large sequence contigs reveals interspersed nested repeats and gene islands in the rf1-associated region of maize.

Kronmiller BA, Wise RP.

Plant Physiol. 2009 Oct;151(2):483-95. doi: 10.1104/pp.109.143370. Epub 2009 Aug 12.

12.

Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m).

SanMiguel PJ, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J.

Funct Integr Genomics. 2002 May;2(1-2):70-80. Epub 2002 Apr 12.

PMID:
12021852
13.

BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements.

Zhang P, Li W, Fellers J, Friebe B, Gill BS.

Chromosoma. 2004 Mar;112(6):288-99. Epub 2004 Feb 18.

PMID:
14986017
14.

Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q.

Faris JD, Zhang Z, Fellers JP, Gill BS.

Funct Integr Genomics. 2008 May;8(2):149-64. doi: 10.1007/s10142-008-0073-z. Epub 2008 Jan 22.

PMID:
18210171
15.

A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor.

Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KF, Sehgal SK, Li W, Gill BS, Bevan MW, Simková H, Dolezel J, Weining S, Lazo GR, Anderson OD, Dvorak J.

Proc Natl Acad Sci U S A. 2013 May 7;110(19):7940-5. doi: 10.1073/pnas.1219082110. Epub 2013 Apr 22.

17.

Genome change in wheat observed through the structure and expression of α/β-gliadin genes.

Kawaura K, Wu J, Matsumoto T, Kanamori H, Katagiri S, Ogihara Y.

Funct Integr Genomics. 2012 Jun;12(2):341-55. doi: 10.1007/s10142-012-0269-0. Epub 2012 Feb 28.

PMID:
22370744
18.

Microcollinearity in an ethylene receptor coding gene region of the Coffea canephora genome is extensively conserved with Vitis vinifera and other distant dicotyledonous sequenced genomes.

Guyot R, de la Mare M, Viader V, Hamon P, Coriton O, Bustamante-Porras J, Poncet V, Campa C, Hamon S, de Kochko A.

BMC Plant Biol. 2009 Feb 25;9:22. doi: 10.1186/1471-2229-9-22.

19.

Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

Salina EA, Sergeeva EM, Adonina IG, Shcherban AB, Afonnikov DA, Belcram H, Huneau C, Chalhoub B.

BMC Genomics. 2009 Sep 5;10:414. doi: 10.1186/1471-2164-10-414.

20.
Items per page

Supplemental Content

Write to the Help Desk