Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 108

1.

In vivo biodegradation and biocompatibility of PEG/sebacic acid-based hydrogels using a cage implant system.

Kim J, Dadsetan M, Ameenuddin S, Windebank AJ, Yaszemski MJ, Lu L.

J Biomed Mater Res A. 2010 Oct;95(1):191-7. doi: 10.1002/jbm.a.32810.

PMID:
20574982
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds.

Kim J, Hefferan TE, Yaszemski MJ, Lu L.

Tissue Eng Part A. 2009 Aug;15(8):2299-307. doi: 10.1089/ten.tea.2008.0326.

PMID:
19292677
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.

Kim J, Lee KW, Hefferan TE, Currier BL, Yaszemski MJ, Lu L.

Biomacromolecules. 2008 Jan;9(1):149-57. Epub 2007 Dec 12.

PMID:
18072747
[PubMed - indexed for MEDLINE]
4.

In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels.

Suggs LJ, Shive MS, Garcia CA, Anderson JM, Mikos AG.

J Biomed Mater Res. 1999 Jul;46(1):22-32.

PMID:
10357132
[PubMed - indexed for MEDLINE]
5.

In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.

Shin H, Quinten Ruhé P, Mikos AG, Jansen JA.

Biomaterials. 2003 Aug;24(19):3201-11.

PMID:
12763447
[PubMed - indexed for MEDLINE]
6.

In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks.

Stevens KR, Einerson NJ, Burmania JA, Kao WJ.

J Biomater Sci Polym Ed. 2002;13(12):1353-66.

PMID:
12555901
[PubMed - indexed for MEDLINE]
7.

In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks.

Ronneberger B, Kao WJ, Anderson JM, Kissel T.

J Biomed Mater Res. 1996 Jan;30(1):31-40.

PMID:
8788103
[PubMed - indexed for MEDLINE]
8.

Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.

Vaisman B, Motiei M, Nyska A, Domb AJ.

J Biomed Mater Res A. 2010 Feb;92(2):419-31. doi: 10.1002/jbm.a.32342.

PMID:
19191319
[PubMed - indexed for MEDLINE]
9.

Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time.

Bjugstad KB, Lampe K, Kern DS, Mahoney M.

J Biomed Mater Res A. 2010 Oct;95(1):79-91. doi: 10.1002/jbm.a.32809.

PMID:
20740603
[PubMed - indexed for MEDLINE]
10.

Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.

Hyung Park J, Bae YH.

J Biomed Mater Res A. 2003 Feb 1;64(2):309-19.

PMID:
12522818
[PubMed - indexed for MEDLINE]
11.

Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility.

Bruggeman JP, Bettinger CJ, Langer R.

J Biomed Mater Res A. 2010 Oct;95(1):92-104. doi: 10.1002/jbm.a.32733.

PMID:
20540093
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

In vivo biocompatibility studies. I. The cage implant system and a biodegradable hydrogel.

Marchant R, Hiltner A, Hamlin C, Rabinovitch A, Slobodkin R, Anderson JM.

J Biomed Mater Res. 1983 Mar;17(2):301-25.

PMID:
6841371
[PubMed - indexed for MEDLINE]
13.

Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels.

Abed A, Assoul N, Ba M, Derkaoui SM, Portes P, Louedec L, Flaud P, Bataille I, Letourneur D, Meddahi-Pellé A.

J Biomed Mater Res A. 2011 Mar 1;96(3):535-42. doi: 10.1002/jbm.a.33007. Epub 2011 Jan 4.

PMID:
21254385
[PubMed - indexed for MEDLINE]
14.

Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels.

Ferreira L, Rafael A, Lamghari M, Barbosa MA, Gil MH, Cabrita AM, Dordick JS.

J Biomed Mater Res A. 2004 Mar 1;68(3):584-96.

PMID:
14762939
[PubMed - indexed for MEDLINE]
15.

A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo.

Sandor M, Harris J, Mathiowitz E.

Biomaterials. 2002 Nov;23(22):4413-23.

PMID:
12219832
[PubMed - indexed for MEDLINE]
16.

Biocompatibility study of as-polymerized poly(L-lactide) in rats using a cage implant system.

Bergsma JE, Rozema FR, Bos RR, Boering G, de Bruijn WC, Pennings AJ.

J Biomed Mater Res. 1995 Feb;29(2):173-9.

PMID:
7738063
[PubMed - indexed for MEDLINE]
17.

Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites.

Link DP, van den Dolder J, van den Beucken JJ, Cuijpers VM, Wolke JG, Mikos AG, Jansen JA.

J Biomed Mater Res A. 2008 Dec 1;87(3):760-9. doi: 10.1002/jbm.a.31831.

PMID:
18200545
[PubMed - indexed for MEDLINE]
18.

In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels.

Suggs LJ, Krishnan RS, Garcia CA, Peter SJ, Anderson JM, Mikos AG.

J Biomed Mater Res. 1998 Nov;42(2):312-20.

PMID:
9773828
[PubMed - indexed for MEDLINE]
19.

Injectable biodegradable polycaprolactone-sebacic acid gels for bone tissue engineering.

Salgado CL, Sanchez EM, Zavaglia CA, Almeida AB, Granja PL.

Tissue Eng Part A. 2012 Jan;18(1-2):137-46. doi: 10.1089/ten.TEA.2011.0294. Epub 2011 Sep 15.

PMID:
21902607
[PubMed - indexed for MEDLINE]
20.

Augmentation of postswelling surgical sealant potential of adhesive hydrogels.

Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER.

J Biomed Mater Res A. 2010 Dec 15;95(4):1159-69. doi: 10.1002/jbm.a.32942. Epub 2010 Sep 28.

PMID:
20878989
[PubMed - indexed for MEDLINE]
Free PMC Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk