Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat.

Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M.

Nanotoxicology. 2010 Jun 1;4(2):150-160.

2.

In vitro toxicity of nanoparticles in BRL 3A rat liver cells.

Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ.

Toxicol In Vitro. 2005 Oct;19(7):975-83. Epub 2005 Aug 25.

PMID:
16125895
3.

Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells.

Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH.

Small. 2009 Apr;5(7):846-53. doi: 10.1002/smll.200800461.

PMID:
19288475
4.

Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.

Sayes CM, Reed KL, Warheit DB.

Toxicol Sci. 2007 May;97(1):163-80. Epub 2007 Feb 14.

5.

Are some neurons hypersensitive to metallic nanoparticles?

Scott BR.

Dose Response. 2012;10(1):37-57. doi: 10.2203/dose-response.10-006.Scott. Epub 2010 Jul 2.

7.

Copper sulfide nanoparticles for photothermal ablation of tumor cells.

Li Y, Lu W, Huang Q, Huang M, Li C, Chen W.

Nanomedicine (Lond). 2010 Oct;5(8):1161-71. doi: 10.2217/nnm.10.85.

PMID:
21039194
9.

Induction of oxidative stress and cytotoxicity by carbon nanomaterials is dependent on physical properties.

Rama Narsimha Reddy A, Narsimha Reddy Y, Himabindu V, Rama Krishna D.

Toxicol Ind Health. 2011 Feb;27(1):3-10. doi: 10.1177/0748233710377780. Epub 2010 Jul 16.

PMID:
20639279
10.

Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells.

Vodyanoy V, Daniels Y, Pustovyy O, MacCrehan WA, Muramoto S, Stan G.

Int J Nanomedicine. 2016 Apr 18;11:1567-76. doi: 10.2147/IJN.S101463. eCollection 2016.

11.

In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes.

Ying E, Hwang HM.

Sci Total Environ. 2010 Sep 15;408(20):4475-81. doi: 10.1016/j.scitotenv.2010.07.025. Epub 2010 Aug 2.

PMID:
20673962
12.

Effects of nanoparticles on the adhesion and cell viability on astrocytes.

Au C, Mutkus L, Dobson A, Riffle J, Lalli J, Aschner M.

Biol Trace Elem Res. 2007 Winter;120(1-3):248-56.

PMID:
17916977
14.

Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.

Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S.

Nanotoxicology. 2011 Mar;5(1):43-54. doi: 10.3109/17435390.2010.489207. Epub 2010 Jun 14.

PMID:
21417687
15.

Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.

Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ.

J Phys Chem B. 2008 Oct 30;112(43):13608-19. doi: 10.1021/jp712087m. Epub 2008 Oct 3.

PMID:
18831567
17.

Copper nanoparticles synthesized by polyol process used to control hematophagous parasites.

Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S.

Parasitol Res. 2011 Nov;109(5):1403-15. doi: 10.1007/s00436-011-2387-3. Epub 2011 Apr 28.

PMID:
21526405
19.

Induction of apoptosis and secondary necrosis in rat dorsal root ganglion cell cultures by oxidized low density lipoprotein.

Papassotiropoulos A, Ludwig M, Naib-Majani W, Rao GS.

Neurosci Lett. 1996 May 3;209(1):33-6.

PMID:
8734903
20.

GM1 and nerve growth factor modulate mitochondrial membrane potential and neurofilament light mRNA expression in cultured dorsal root ganglion and spinal cord neurons during excitotoxic glutamate exposure.

Huang F, Dong X, Zhang L, Zhang X, Zhao D, Bai X, Li Z.

J Clin Neurosci. 2010 Apr;17(4):495-500. doi: 10.1016/j.jocn.2009.07.112. Epub 2010 Feb 19.

PMID:
20171893
Items per page

Supplemental Content

Write to the Help Desk