Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 172

Similar articles for PubMed (Select 20506476)

1.

The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner.

Volkmann K, Chen YY, Harris MP, Wullimann MF, Köster RW.

J Comp Neurol. 2010 Jul 15;518(14):2794-817. doi: 10.1002/cne.22364.

PMID:
20506476
2.

Rest represses maturation within migrating facial branchiomotor neurons.

Love CE, Prince VE.

Dev Biol. 2015 May 15;401(2):220-35. doi: 10.1016/j.ydbio.2015.02.021. Epub 2015 Mar 11.

PMID:
25769695
3.

Nucleus deformation of SaOs-2 cells on rhombic µ-pillars.

Eichhorn M, Stannard C, Anselme K, Rühe J.

J Mater Sci Mater Med. 2015 Feb;26(2):108. doi: 10.1007/s10856-015-5427-1. Epub 2015 Feb 11.

PMID:
25665842
4.

Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.

Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y.

Cell Rep. 2015 Feb 3;10(4):537-50. doi: 10.1016/j.celrep.2014.12.051. Epub 2015 Jan 29.

5.

Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

Tsai MY, Lu YF, Liu YH, Lien HW, Huang CJ, Wu JL, Hwang SL.

Dev Neurobiol. 2014 Dec 19. doi: 10.1002/dneu.22258. [Epub ahead of print]

PMID:
25528982
6.

Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.

Takeuchi M, Matsuda K, Yamaguchi S, Asakawa K, Miyasaka N, Lal P, Yoshihara Y, Koga A, Kawakami K, Shimizu T, Hibi M.

Dev Biol. 2015 Jan 1;397(1):1-17. doi: 10.1016/j.ydbio.2014.09.030. Epub 2014 Oct 7.

PMID:
25300581
7.

Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica.

Kishi K, Onuma TA, Nishida H.

Dev Biol. 2014 Nov 15;395(2):299-306. doi: 10.1016/j.ydbio.2014.09.006. Epub 2014 Sep 16.

PMID:
25224225
8.

A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering.

Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K.

J Neurosci Methods. 2014 Sep 30;235:331-48. doi: 10.1016/j.jneumeth.2014.07.021. Epub 2014 Aug 11. Review.

PMID:
25107853
9.

Minicerebellum, now available for reductionists' functional study.

Okamoto H.

Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11580-1. doi: 10.1073/pnas.1411821111. Epub 2014 Jul 29. No abstract available.

10.

Localization and characterization of val-opsin isoform-expressing cells in the brain of adult zebrafish.

Hang CY, Kitahashi T, Parhar IS.

J Comp Neurol. 2014 Dec 1;522(17):3847-60. doi: 10.1002/cne.23645. Epub 2014 Aug 11.

PMID:
25043553
11.

Inhibitory effects of draxin on axonal outgrowth and migration of precerebellar neurons.

Riyadh MA, Shinmyo Y, Ohta K, Tanaka H.

Biochem Biophys Res Commun. 2014 Jun 20;449(1):169-74. doi: 10.1016/j.bbrc.2014.05.013. Epub 2014 May 14.

PMID:
24832731
12.

Genetic manipulation of cerebellar granule neurons in vitro and in vivo to study neuronal morphology and migration.

Holubowska A, Mukherjee C, Vadhvani M, Stegmüller J.

J Vis Exp. 2014 Mar 17;(85). doi: 10.3791/51070.

PMID:
24686379
13.

The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish.

Butts T, Modrell MS, Baker CV, Wingate RJ.

Evol Dev. 2014 Mar;16(2):92-100. doi: 10.1111/ede.12067.

14.

Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.

Jain RA, Bell H, Lim A, Chien CB, Granato M.

J Neurosci. 2014 Feb 19;34(8):2898-909. doi: 10.1523/JNEUROSCI.2420-13.2014.

15.

A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus.

Gilland E, Straka H, Wong TW, Baker R, Zottoli SJ.

J Comp Neurol. 2014 Jul 1;522(10):2446-64. doi: 10.1002/cne.23544.

PMID:
24452830
16.

Developmental origins of diversity in cerebellar output nuclei.

Green MJ, Wingate RJ.

Neural Dev. 2014 Jan 9;9:1. doi: 10.1186/1749-8104-9-1.

17.

The control of precerebellar neuron migration by RNA-binding protein Csde1.

Kobayashi H, Kawauchi D, Hashimoto Y, Ogata T, Murakami F.

Neuroscience. 2013 Dec 3;253:292-303. doi: 10.1016/j.neuroscience.2013.08.055. Epub 2013 Sep 5.

PMID:
24012837
18.

Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.

Sumbre G, Poo MM.

Cold Spring Harb Protoc. 2013 Sep 1;2013(9):873-9. doi: 10.1101/pdb.prot077131.

PMID:
24003199
19.

Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias.

Kita Y, Kawakami K, Takahashi Y, Murakami F.

PLoS One. 2013 Jul 23;8(7):e70091. doi: 10.1371/journal.pone.0070091. Print 2013.

20.

Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes.

Pose-Méndez S, Candal E, Adrio F, Rodríguez-Moldes I.

J Comp Neurol. 2014 Jan 1;522(1):131-68. doi: 10.1002/cne.23393.

PMID:
23818330
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk