Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Similar articles for PubMed (Select 20221822)

1.

Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments.

Lu J, Gong D, Choong SY, Xu H, Chan YK, Chen X, Fitzpatrick S, Glyn-Jones S, Zhang S, Nakamura T, Ruggiero K, Obolonkin V, Poppitt SD, Phillips AR, Cooper GJ.

Diabetologia. 2010 Jun;53(6):1217-26. doi: 10.1007/s00125-010-1698-8. Epub 2010 Mar 11.

PMID:
20221822
2.

Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer's disease.

Cooper GJ.

Drugs. 2011 Jul 9;71(10):1281-320. doi: 10.2165/11591370-000000000-00000. Review.

PMID:
21770477
3.

Treatment with a copper-selective chelator causes substantive improvement in cardiac function of diabetic rats with left-ventricular impairment.

Lu J, Pontré B, Pickup S, Choong SY, Li M, Xu H, Gamble GD, Phillips AR, Cowan BR, Young AA, Cooper GJ.

Cardiovasc Diabetol. 2013 Jan 31;12:28. doi: 10.1186/1475-2840-12-28.

4.

A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-beta activation in the kidneys of rats used as a model of diabetes.

Gong D, Lu J, Chen X, Reddy S, Crossman DJ, Glyn-Jones S, Choong YS, Kennedy J, Barry B, Zhang S, Chan YK, Ruggiero K, Phillips AR, Cooper GJ.

Diabetologia. 2008 Sep;51(9):1741-51. doi: 10.1007/s00125-008-1088-7. Epub 2008 Jul 18.

PMID:
18636238
5.

Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats.

Gong D, Lu J, Chen X, Choong SY, Zhang S, Chan YK, Glyn-Jones S, Gamble GD, Phillips AR, Cooper GJ.

Mol Pharmacol. 2006 Dec;70(6):2045-51. Epub 2006 Sep 14.

6.

Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation.

Zhang S, Liu H, Amarsingh GV, Cheung CC, Hogl S, Narayanan U, Zhang L, McHarg S, Xu J, Gong D, Kennedy J, Barry B, Choong YS, Phillips AR, Cooper GJ.

Cardiovasc Diabetol. 2014 Jun 14;13:100. doi: 10.1186/1475-2840-13-100.

7.

Selective divalent copper chelation for the treatment of diabetes mellitus.

Cooper GJ.

Curr Med Chem. 2012;19(17):2828-60. Review.

PMID:
22455587
8.

Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats.

Zhang L, Ward ML, Phillips AR, Zhang S, Kennedy J, Barry B, Cannell MB, Cooper GJ.

Cardiovasc Diabetol. 2013 Aug 28;12:123. doi: 10.1186/1475-2840-12-123.

9.

Regeneration of the heart in diabetes by selective copper chelation.

Cooper GJ, Phillips AR, Choong SY, Leonard BL, Crossman DJ, Brunton DH, Saafi 'L, Dissanayake AM, Cowan BR, Young AA, Occleshaw CJ, Chan YK, Leahy FE, Keogh GF, Gamble GD, Allen GR, Pope AJ, Boyd PD, Poppitt SD, Borg TK, Doughty RN, Baker JR.

Diabetes. 2004 Sep;53(9):2501-8.

10.

Quantitative proteomic profiling identifies new renal targets of copper(II)-selective chelation in the reversal of diabetic nephropathy in rats.

Gong D, Chen X, Middleditch M, Huang L, Vazhoor Amarsingh G, Reddy S, Lu J, Zhang S, Ruggiero K, Phillips AR, Cooper GJ.

Proteomics. 2009 Sep;9(18):4309-20. doi: 10.1002/pmic.200900285.

PMID:
19634143
11.

Complex formation equilibria of Cu(II) and Zn(II) with triethylenetetramine and its mono- and di-acetyl metabolites.

Nurchi VM, Crisponi G, Crespo-Alonso M, Lachowicz JI, Szewczuk Z, Cooper GJ.

Dalton Trans. 2013 May 7;42(17):6161-70. doi: 10.1039/c2dt32252h. Epub 2012 Dec 3.

PMID:
23202417
12.

A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study.

Cooper GJ, Young AA, Gamble GD, Occleshaw CJ, Dissanayake AM, Cowan BR, Brunton DH, Baker JR, Phillips AR, Frampton CM, Poppitt SD, Doughty RN.

Diabetologia. 2009 Apr;52(4):715-22. doi: 10.1007/s00125-009-1265-3. Epub 2009 Jan 27.

PMID:
19172243
13.

Triethylenetetramine and metabolites: levels in relation to copper and zinc excretion in urine of healthy volunteers and type 2 diabetic patients.

Lu J, Chan YK, Gamble GD, Poppitt SD, Othman AA, Cooper GJ.

Drug Metab Dispos. 2007 Feb;35(2):221-7. Epub 2006 Nov 15.

14.

Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E.

Ulusu NN, Sahilli M, Avci A, Canbolat O, Ozansoy G, Ari N, Bali M, Stefek M, Stolc S, Gajdosik A, Karasu C.

Neurochem Res. 2003 Jun;28(6):815-23.

PMID:
12718433
17.

Action of capparis decidua against alloxan-induced oxidative stress and diabetes in rat tissues.

Yadav P, Sarkar S, Bhatnagar D.

Pharmacol Res. 1997 Sep;36(3):221-8.

PMID:
9367667
18.

Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction.

Galhardi CM, Diniz YS, Faine LA, Rodrigues HG, Burneiko RC, Ribas BO, Novelli EL.

Food Chem Toxicol. 2004 Dec;42(12):2053-60.

PMID:
15500942
19.

Effect of irbesartan on the antioxidant defence system and nitric oxide release in diabetic rat kidney.

Anjaneyulu M, Chopra K.

Am J Nephrol. 2004 Sep-Oct;24(5):488-96. Epub 2004 Sep 7.

PMID:
15353911
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk