Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 207

1.

Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene.

Huang L, Hartland GV, Chu LQ, Luxmi, Feenstra RM, Lian C, Tahy K, Xing H.

Nano Lett. 2010 Apr 14;10(4):1308-13. doi: 10.1021/nl904106t.

PMID:
20210348
[PubMed - indexed for MEDLINE]
2.

Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy.

Gao B, Hartland G, Fang T, Kelly M, Jena D, Xing HG, Huang L.

Nano Lett. 2011 Aug 10;11(8):3184-9. doi: 10.1021/nl201397a. Epub 2011 Jun 29.

PMID:
21696177
[PubMed]
3.

Ultrafast carrier kinetics in exfoliated graphene and thin graphite films.

Newson RW, Dean J, Schmidt B, van Driel HM.

Opt Express. 2009 Feb 16;17(4):2326-33.

PMID:
19219135
[PubMed - indexed for MEDLINE]
4.

Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers.

Berciaud S, Ryu S, Brus LE, Heinz TF.

Nano Lett. 2009 Jan;9(1):346-52. doi: 10.1021/nl8031444.

PMID:
19099462
[PubMed - indexed for MEDLINE]
5.

Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy.

Sun D, Wu ZK, Divin C, Li X, Berger C, de Heer WA, First PN, Norris TB.

Phys Rev Lett. 2008 Oct 10;101(15):157402. Epub 2008 Oct 6.

PMID:
18999638
[PubMed]
6.

Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.

Yue Y, Zhang J, Wang X.

Small. 2011 Dec 2;7(23):3324-33. doi: 10.1002/smll.201101598. Epub 2011 Oct 13.

PMID:
21997970
[PubMed - indexed for MEDLINE]
7.

Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene.

George PA, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F, Spencer MG.

Nano Lett. 2008 Dec;8(12):4248-51. doi: 10.1021/nl8019399.

PMID:
19367881
[PubMed]
8.

Doped graphene as tunable electron-phonon coupling material.

Attaccalite C, Wirtz L, Lazzeri M, Mauri F, Rubio A.

Nano Lett. 2010 Apr 14;10(4):1172-6. doi: 10.1021/nl9034626. Erratum in: Nano Lett. 2011 Feb 9;11(2):914.

PMID:
20222744
[PubMed - indexed for MEDLINE]
9.

Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference.

Sun D, Divin C, Rioux J, Sipe JE, Berger C, de Heer WA, First PN, Norris TB.

Nano Lett. 2010 Apr 14;10(4):1293-6. doi: 10.1021/nl9040737.

PMID:
20210362
[PubMed - indexed for MEDLINE]
10.

Can graphene be used as a substrate for Raman enhancement?

Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus MS, Zhang J, Liu Z.

Nano Lett. 2010 Feb 10;10(2):553-61. doi: 10.1021/nl903414x.

PMID:
20039694
[PubMed - indexed for MEDLINE]
11.

Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite.

Kampfrath T, Perfetti L, Schapper F, Frischkorn C, Wolf M.

Phys Rev Lett. 2005 Oct 28;95(18):187403. Epub 2005 Oct 26.

PMID:
16383946
[PubMed]
12.

Ultrafast hot-carrier-dominated photocurrent in graphene.

Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden D, Xu X.

Nat Nanotechnol. 2012 Jan 15;7(2):114-8. doi: 10.1038/nnano.2011.243.

PMID:
22245859
[PubMed - indexed for MEDLINE]
13.

Hot phonons in an electrically biased graphene constriction.

Chae DH, Krauss B, von Klitzing K, Smet JH.

Nano Lett. 2010 Feb 10;10(2):466-71. doi: 10.1021/nl903167f.

PMID:
20041665
[PubMed]
14.

n-Type behavior of graphene supported on Si/SiO(2) substrates.

Romero HE, Shen N, Joshi P, Gutierrez HR, Tadigadapa SA, Sofo JO, Eklund PC.

ACS Nano. 2008 Oct 28;2(10):2037-44. doi: 10.1021/nn800354m.

PMID:
19206449
[PubMed - indexed for MEDLINE]
15.

Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene.

Graham MW, Shi SF, Wang Z, Ralph DC, Park J, McEuen PL.

Nano Lett. 2013;13(11):5497-502. doi: 10.1021/nl4030787. Epub 2013 Oct 23.

PMID:
24124889
[PubMed - indexed for MEDLINE]
16.

The dependence of graphene Raman D-band on carrier density.

Liu J, Li Q, Zou Y, Qian Q, Jin Y, Li G, Jiang K, Fan S.

Nano Lett. 2013;13(12):6170-5. doi: 10.1021/nl4035048. Epub 2013 Dec 3.

PMID:
24283411
[PubMed - indexed for MEDLINE]
17.

Gating of single-layer graphene with single-stranded deoxyribonucleic acids.

Lin J, Teweldebrhan D, Ashraf K, Liu G, Jing X, Yan Z, Li R, Ozkan M, Lake RK, Balandin AA, Ozkan CS.

Small. 2010 May 21;6(10):1150-5. doi: 10.1002/smll.200902379.

PMID:
20473987
[PubMed - indexed for MEDLINE]
18.

The graphene-gold interface and its implications for nanoelectronics.

Sundaram RS, Steiner M, Chiu HY, Engel M, Bol AA, Krupke R, Burghard M, Kern K, Avouris P.

Nano Lett. 2011 Sep 14;11(9):3833-7. doi: 10.1021/nl201907u. Epub 2011 Aug 5.

PMID:
21809874
[PubMed - indexed for MEDLINE]
19.

Studies of electron-phonon and phonon-phonon interactions in InN using ultrafast Raman spectroscopy.

Tsen KT, Ferry DK.

J Phys Condens Matter. 2009 Apr 29;21(17):174202. doi: 10.1088/0953-8984/21/17/174202. Epub 2009 Apr 1.

PMID:
21825406
[PubMed]
20.

Using the G' Raman cross-section to understand the phonon dynamics in bilayer graphene systems.

Mafra DL, Kong J, Sato K, Saito R, Dresselhaus MS, Araujo PT.

Nano Lett. 2012 Jun 13;12(6):2883-7. doi: 10.1021/nl300477n. Epub 2012 May 31. Erratum in: Nano Lett. 2013 Jan 9;13(1):330.

PMID:
22620978
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk