Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Similar articles for PubMed (Select 20190278)

1.

A proteome-wide analysis of kinase-substrate network in the DNA damage response.

Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H.

J Biol Chem. 2010 Apr 23;285(17):12803-12. doi: 10.1074/jbc.M110.106989. Epub 2010 Feb 27.

2.

Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.

Smolka MB, Albuquerque CP, Chen SH, Zhou H.

Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9. Epub 2007 Jun 11.

3.

A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1.

Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP.

Mol Cell Biol. 2004 Dec;24(23):10126-44.

4.

Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses.

Morrison AJ, Kim JA, Person MD, Highland J, Xiao J, Wehr TS, Hensley S, Bao Y, Shen J, Collins SR, Weissman JS, Delrow J, Krogan NJ, Haber JE, Shen X.

Cell. 2007 Aug 10;130(3):499-511.

5.

Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways.

Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ.

Science. 1996 Jan 19;271(5247):357-60.

PMID:
8553072
6.

Checkpoint kinases regulate a global network of transcription factors in response to DNA damage.

Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD.

Cell Rep. 2013 Jul 11;4(1):174-88. doi: 10.1016/j.celrep.2013.05.041. Epub 2013 Jun 27.

7.

Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.

Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD.

Mol Cell Proteomics. 2014 Feb;13(2):551-65. doi: 10.1074/mcp.M113.034058. Epub 2013 Dec 3.

8.
9.

A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae.

Taschner M, Harreman M, Teng Y, Gill H, Anindya R, Maslen SL, Skehel JM, Waters R, Svejstrup JQ.

Mol Cell Biol. 2010 Jan;30(2):436-46. doi: 10.1128/MCB.00822-09. Epub 2009 Nov 9.

10.
11.

MEC1-dependent phosphorylation of yeast RPA1 in vitro.

Kim HS, Brill SJ.

DNA Repair (Amst). 2003 Dec 9;2(12):1321-35.

PMID:
14642562
12.

Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae.

Mallory JC, Bashkirov VI, Trujillo KM, Solinger JA, Dominska M, Sung P, Heyer WD, Petes TD.

DNA Repair (Amst). 2003 Sep 18;2(9):1041-64.

PMID:
12967660
13.

Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae.

Chen SH, Smolka MB, Zhou H.

J Biol Chem. 2007 Jan 12;282(2):986-95. Epub 2006 Nov 17.

14.
15.

RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae.

Grandin N, Charbonneau M.

DNA Repair (Amst). 2013 Mar 1;12(3):212-26. doi: 10.1016/j.dnarep.2012.12.002. Epub 2013 Jan 9.

PMID:
23312805
16.

Dominant TEL1-hy mutations compensate for Mec1 lack of functions in the DNA damage response.

Baldo V, Testoni V, Lucchini G, Longhese MP.

Mol Cell Biol. 2008 Jan;28(1):358-75. Epub 2007 Oct 22.

17.

Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of replication protein A.

Bartrand AJ, Iyasu D, Marinco SM, Brush GS.

Genetics. 2006 Jan;172(1):27-39. Epub 2005 Aug 22.

18.

Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.

Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D.

Curr Biol. 2005 Aug 9;15(15):1364-75.

19.
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk