Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.
2.

Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings.

Hayes SM, Webb SM, Bargar JR, O'Day PA, Maier RM, Chorover J.

Environ Sci Technol. 2012 Jun 5;46(11):5834-41. doi: 10.1021/es300603s. Epub 2012 May 18.

3.

Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment.

Hayes SM, O'Day PA, Webb SM, Maier RM, Chorover J.

Environ Sci Technol. 2011 Sep 1;45(17):7166-72. doi: 10.1021/es201006b. Epub 2011 Aug 11.

4.

Surficial weathering of iron sulfide mine tailings under semi-arid climate.

Hayes SM, Root RA, Perdrial N, Maier R, Chorover J.

Geochim Cosmochim Acta. 2014 Sep 15;141:240-257.

5.

Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate.

Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J.

Appl Geochem. 2015 Nov 1;62:131-149. Epub 2015 Feb 7.

PMID:
26549929
6.

Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.

Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič L, Kučerová G, Radková A, Sottník P, Vozár J.

Environ Sci Pollut Res Int. 2013 Nov;20(11):7627-42. doi: 10.1007/s11356-013-1581-5. Epub 2013 Feb 24.

PMID:
23436124
7.

Vertical distribution and speciation of trace metals in weathering flotation residues of a zinc/lead sulfide mine.

Schuwirth N, Voegelin A, Kretzschmar R, Hofmann T.

J Environ Qual. 2007 Jan 9;36(1):61-9. Print 2007 Jan-Feb.

PMID:
17215213
8.

Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques.

Ye ZH, Shu WS, Zhang ZQ, Lan CY, Wong MH.

Chemosphere. 2002 Jun;47(10):1103-11.

PMID:
12137044
9.

Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints.

Conesa HM, Schulin R, Nowack B.

Environ Sci Pollut Res Int. 2010 Mar;17(3):657-64. doi: 10.1007/s11356-009-0254-x. Epub 2009 Oct 9.

PMID:
19816728
10.

Acidification of lead/zinc mine tailings and its effect on heavy metal mobility.

Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH.

Environ Int. 2001 May;26(5-6):389-94.

PMID:
11392756
11.

Characterization of zinc, lead, and cadmium in mine waste: implications for transport, exposure, and bioavailability.

Schaider LA, Senn DB, Brabander DJ, McCarthy KD, Shine JP.

Environ Sci Technol. 2007 Jun 1;41(11):4164-71.

PMID:
17612206
12.

Heavy metal localisation in mycorrhizas of Epipactis atrorubens (Hoffm.) Besser (Orchidaceae) from zinc mine tailings.

Jurkiewicz A, Turnau K, Mesjasz-Przybyłowicz J, Przybyłowicz W, Godzik B.

Protoplasma. 2001;218(3-4):117-24.

PMID:
11770428
13.

Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings.

Anju M, Banerjee DK.

Chemosphere. 2010 Mar;78(11):1393-402. doi: 10.1016/j.chemosphere.2009.12.064. Epub 2010 Jan 27.

PMID:
20106503
14.

Accelerated weathering of biosolid-amended copper mine tailings.

Pond AP, White SA, Milczarek M, Thompson TL.

J Environ Qual. 2005 Jul 5;34(4):1293-301. Print 2005 Jul-Aug.

PMID:
15998851
15.

Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado.

Eusden JD Jr, Gallagher L, Eighmy TT, Crannell BS, Krzanowski JR, Butler LG, Cartledge FK, Emery EF, Shaw EL, Francis CA.

Waste Manag. 2002;22(2):117-35.

PMID:
12004827
16.

Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.

Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J.

J Environ Manage. 2009 Feb;90(2):1106-16. doi: 10.1016/j.jenvman.2008.04.007. Epub 2008 Jun 24.

PMID:
18572301
17.

Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings.

Wang S, Mulligan CN.

Environ Geochem Health. 2013 Feb;35(1):111-8. doi: 10.1007/s10653-012-9461-3. Epub 2012 May 16.

PMID:
22648854
18.

The character of the suspended and dissolved phases in the water cover of the flooded mine tailings at Stekenjokk, northern Sweden.

Holmström H, Ljungberg J, Ohlander B.

Sci Total Environ. 2000 Feb 28;247(1):15-31.

PMID:
10721139
19.

Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania.

Zobrist J, Sima M, Dogaru D, Senila M, Yang H, Popescu C, Roman C, Bela A, Frei L, Dold B, Balteanu D.

Environ Sci Pollut Res Int. 2009 Aug;16 Suppl 1:S14-26. doi: 10.1007/s11356-008-0068-2. Epub 2009 Jan 22.

PMID:
19159960
20.

Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes.

Mendez MO, Glenn EP, Maier RM.

J Environ Qual. 2007 Jan 9;36(1):245-53. Print 2007 Jan-Feb.

PMID:
17215233
Items per page

Supplemental Content

Write to the Help Desk