Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 123

Similar articles for PubMed (Select 20097308)

1.

A similarity network approach for the analysis and comparison of protein sequence/structure sets.

Valavanis I, Spyrou G, Nikita K.

J Biomed Inform. 2010 Apr;43(2):257-67. doi: 10.1016/j.jbi.2010.01.005. Epub 2010 Jan 25.

2.

Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification.

Huang CD, Lin CT, Pal NR.

IEEE Trans Nanobioscience. 2003 Dec;2(4):221-32.

PMID:
15376912
3.

Graph-based clustering for finding distant relationships in a large set of protein sequences.

Kawaji H, Takenaka Y, Matsuda H.

Bioinformatics. 2004 Jan 22;20(2):243-52.

4.

A 3D sequence-independent representation of the protein data bank.

Fischer D, Tsai CJ, Nussinov R, Wolfson H.

Protein Eng. 1995 Oct;8(10):981-97.

PMID:
8771179
5.

Measuring the similarity of protein structures by means of the universal similarity metric.

Krasnogor N, Pelta DA.

Bioinformatics. 2004 May 1;20(7):1015-21. Epub 2004 Jan 29.

6.

Protein structure prediction and analysis as a tool for functional genomics.

Baker EN, Arcus VL, Lott JS.

Appl Bioinformatics. 2003;2(3 Suppl):S3-10.

PMID:
15130810
7.

Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.

Pascual-García A, Abia D, Ortiz AR, Bastolla U.

PLoS Comput Biol. 2009 Mar;5(3):e1000331. doi: 10.1371/journal.pcbi.1000331. Epub 2009 Mar 27.

8.

FORTE: a profile-profile comparison tool for protein fold recognition.

Tomii K, Akiyama Y.

Bioinformatics. 2004 Mar 1;20(4):594-5. Epub 2004 Feb 5.

9.

Recognizing the fold of a protein structure.

Harrison A, Pearl F, Sillitoe I, Slidel T, Mott R, Thornton J, Orengo C.

Bioinformatics. 2003 Sep 22;19(14):1748-59.

10.

ProClust: improved clustering of protein sequences with an extended graph-based approach.

Pipenbacher P, Schliep A, Schneckener S, Schönhuth A, Schomburg D, Schrader R.

Bioinformatics. 2002;18 Suppl 2:S182-91.

11.

Assessment of the probabilities for evolutionary structural changes in protein folds.

Viksna J, Gilbert D.

Bioinformatics. 2007 Apr 1;23(7):832-41. Epub 2007 Feb 4.

12.

Search for structural similarity in proteins.

Leluk J, Konieczny L, Roterman I.

Bioinformatics. 2003 Jan;19(1):117-24.

13.

A neural network method for prediction of beta-turn types in proteins using evolutionary information.

Kaur H, Raghava GP.

Bioinformatics. 2004 Nov 1;20(16):2751-8. Epub 2004 May 14.

14.

MSAT: a multiple sequence alignment tool based on TOPS.

Ren T, Veeramalai M, Tan AC, Gilbert D.

Appl Bioinformatics. 2004;3(2-3):149-58.

PMID:
15693740
15.

Protein structural similarity search by Ramachandran codes.

Lo WC, Huang PJ, Chang CH, Lyu PC.

BMC Bioinformatics. 2007 Aug 23;8:307.

16.

Tools for integrated sequence-structure analysis with UCSF Chimera.

Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE.

BMC Bioinformatics. 2006 Jul 12;7:339.

17.

Multipolar representation of protein structure.

Gramada A, Bourne PE.

BMC Bioinformatics. 2006 May 4;7:242.

18.

A comprehensive and non-redundant database of protein domain movements.

Qi G, Lee R, Hayward S.

Bioinformatics. 2005 Jun 15;21(12):2832-8. Epub 2005 Mar 31.

20.

Functional proteomics with biolinguistic methods. n-grams deliver sensitive portrayals of gene similarity.

Singh GB, Singh H.

IEEE Eng Med Biol Mag. 2005 May-Jun;24(3):73-80. No abstract available.

PMID:
15971844
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk