Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 410

1.

Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers.

Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, Sen CK, Guan J.

Acta Biomater. 2010 Jun;6(6):1978-91. doi: 10.1016/j.actbio.2009.12.011. Epub 2009 Dec 23.

PMID:
20004745
2.

Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites.

Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG.

J Biomed Mater Res A. 2009 Mar 15;88(4):889-97. doi: 10.1002/jbm.a.31948.

PMID:
18381637
3.

Injectable, highly flexible, and thermosensitive hydrogels capable of delivering superoxide dismutase.

Li Z, Wang F, Roy S, Sen CK, Guan J.

Biomacromolecules. 2009 Dec 14;10(12):3306-16. doi: 10.1021/bm900900e.

PMID:
19919046
4.

Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.

Wang F, Li Z, Lannutti JL, Wagner WR, Guan J.

Acta Biomater. 2009 Oct;5(8):2901-12. doi: 10.1016/j.actbio.2009.04.016. Epub 2009 May 4.

PMID:
19433136
5.

High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel.

Li Z, Guo X, Palmer AF, Das H, Guan J.

Acta Biomater. 2012 Oct;8(10):3586-95. doi: 10.1016/j.actbio.2012.06.024. Epub 2012 Jun 21.

PMID:
22729021
6.

Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.

Wang LS, Chung JE, Chan PP, Kurisawa M.

Biomaterials. 2010 Feb;31(6):1148-57. doi: 10.1016/j.biomaterials.2009.10.042. Epub 2009 Nov 4.

PMID:
19892395
7.

Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer.

Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW.

Biomaterials. 2004 Nov;25(26):5743-51.

PMID:
15147820
8.

Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.

Vermonden T, Fedorovich NE, van Geemen D, Alblas J, van Nostrum CF, Dhert WJ, Hennink WE.

Biomacromolecules. 2008 Mar;9(3):919-26. doi: 10.1021/bm7013075. Epub 2008 Feb 21.

PMID:
18288801
9.

In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.

Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL.

Biomaterials. 2005 Dec;26(34):7082-94.

PMID:
15985292
10.

A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.

Liu Y, Chan-Park MB.

Biomaterials. 2010 Feb;31(6):1158-70. doi: 10.1016/j.biomaterials.2009.10.040. Epub 2009 Nov 7.

PMID:
19897239
11.

Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.

Li Z, Guo X, Matsushita S, Guan J.

Biomaterials. 2011 Apr;32(12):3220-32. doi: 10.1016/j.biomaterials.2011.01.050. Epub 2011 Feb 5.

PMID:
21296413
12.

Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering.

Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG.

Biomaterials. 2007 Jul;28(21):3217-27. Epub 2007 Apr 5.

13.

Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications.

Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG.

Biomaterials. 2005 Dec;26(34):7095-103.

PMID:
16023196
14.

Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro.

Yan J, Yang L, Wang G, Xiao Y, Zhang B, Qi N.

J Biomater Appl. 2010 Mar;24(7):625-37. doi: 10.1177/0885328208100536. Epub 2009 May 18.

PMID:
19451182
15.

Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments.

Kim J, Park Y, Tae G, Lee KB, Hwang CM, Hwang SJ, Kim IS, Noh I, Sun K.

J Biomed Mater Res A. 2009 Mar 15;88(4):967-75. doi: 10.1002/jbm.a.31947.

PMID:
18384163
16.

A thermosensitive hydrogel capable of releasing bFGF for enhanced differentiation of mesenchymal stem cell into cardiomyocyte-like cells under ischemic conditions.

Li Z, Guo X, Guan J.

Biomacromolecules. 2012 Jun 11;13(6):1956-64. doi: 10.1021/bm300574j. Epub 2012 May 18.

PMID:
22578081
17.

In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.

Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ.

J Biomed Mater Res A. 2010 Dec 1;95(3):673-81. doi: 10.1002/jbm.a.32884.

PMID:
20725983
18.

Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.

Xu Y, Li Z, Li X, Fan Z, Liu Z, Xie X, Guan J.

Acta Biomater. 2015 Oct;26:23-33. doi: 10.1016/j.actbio.2015.08.010. Epub 2015 Aug 12.

PMID:
26277379
19.

Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.

Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S.

Nanotechnology. 2012 Mar 9;23(9):095705. doi: 10.1088/0957-4484/23/9/095705. Epub 2012 Feb 10.

PMID:
22322583
20.

Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels.

Park KH, Na K.

J Biosci Bioeng. 2008 Jul;106(1):74-9. doi: 10.1263/jbb.106.74.

PMID:
18691535
Items per page

Supplemental Content

Write to the Help Desk