Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 287

1.

Microbial dissolution of hematite and associated cellular fossilization by reduced iron phases: a study of ancient microbe-mineral surface interactions.

Kolo K, Konhauser K, Krumbein WE, Ingelgem YV, Hubin A, Claeys P.

Astrobiology. 2009 Oct;9(8):777-96. doi: 10.1089/ast.2008.0263.

PMID:
19845448
[PubMed - indexed for MEDLINE]
2.

Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.

Liu C, Zachara JM, Foster NS, Strickland J.

Environ Sci Technol. 2007 Nov 15;41(22):7730-5.

PMID:
18075081
[PubMed - indexed for MEDLINE]
3.

Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.

Langley S, Igric P, Takahashi Y, Sakai Y, Fortin D, Hannington MD, Schwarz-Schampera U.

Geobiology. 2009 Jan;7(1):35-49. doi: 10.1111/j.1472-4669.2008.00180.x.

PMID:
19200145
[PubMed - indexed for MEDLINE]
4.

Importance of a martian hematite site for astrobiology.

Allen CC, Westall F, Schelble RT.

Astrobiology. 2001 Spring;1(1):111-23.

PMID:
12448998
[PubMed - indexed for MEDLINE]
5.
6.

Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.

Miot J, Maclellan K, Benzerara K, Boisset N.

Geobiology. 2011 Nov;9(6):459-70. doi: 10.1111/j.1472-4669.2011.00298.x. Epub 2011 Sep 28.

PMID:
21955835
[PubMed - indexed for MEDLINE]
7.

Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

Sand W, Gehrke T.

Res Microbiol. 2006 Jan-Feb;157(1):49-56. Epub 2005 Dec 15. Review.

PMID:
16431087
[PubMed - indexed for MEDLINE]
8.

Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F.

Geobiology. 2009 Jun;7(3):373-84. doi: 10.1111/j.1472-4669.2009.00203.x.

PMID:
19573166
[PubMed - indexed for MEDLINE]
9.

Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

Dippon U, Pantke C, Porsch K, Larese-Casanova P, Kappler A.

Environ Sci Technol. 2012 Jun 19;46(12):6556-65. doi: 10.1021/es2046266. Epub 2012 Jun 1.

PMID:
22642801
[PubMed - indexed for MEDLINE]
10.

Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene.

Kim HS, Kang WH, Kim M, Park JY, Hwang I.

Chemosphere. 2008 Oct;73(5):813-9. doi: 10.1016/j.chemosphere.2008.04.092. Epub 2008 Jul 1.

PMID:
18597815
[PubMed - indexed for MEDLINE]
11.

3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches.

Schmid G, Zeitvogel F, Hao L, Ingino P, Floetenmeyer M, Stierhof YD, Schroeppel B, Burkhardt CJ, Kappler A, Obst M.

Geobiology. 2014 Jul;12(4):340-61. doi: 10.1111/gbi.12088. Epub 2014 May 14.

PMID:
24828365
[PubMed - indexed for MEDLINE]
12.

Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY.

Shin HY, Singhal N, Park JW.

Chemosphere. 2007 Jun;68(6):1129-34. Epub 2007 Mar 8.

PMID:
17349671
[PubMed - indexed for MEDLINE]
13.

Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD.

Coker VS, Byrne JM, Telling ND, VAN DER Laan G, Lloyd JR, Hitchcock AP, Wang J, Pattrick RA.

Geobiology. 2012 Jul;10(4):347-54. doi: 10.1111/j.1472-4669.2012.00329.x. Epub 2012 Apr 20.

PMID:
22515480
[PubMed - indexed for MEDLINE]
14.

Septate-tubular textures in 2.0-Ga pillow lavas from the Pechenga Greenstone Belt: a nano-spectroscopic approach to investigate their biogenicity.

Fliegel D, Wirth R, Simonetti A, Furnes H, Staudigel H, Hanski E, Muehlenbachs K.

Geobiology. 2010 Dec;8(5):372-90. doi: 10.1111/j.1472-4669.2010.00252.x.

PMID:
20698893
[PubMed - indexed for MEDLINE]
15.

Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.

Kappler A, Benz M, Schink B, Brune A.

FEMS Microbiol Ecol. 2004 Jan 1;47(1):85-92. doi: 10.1016/S0168-6496(03)00245-9.

PMID:
19712349
[PubMed - indexed for MEDLINE]
Free Article
16.

Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation.

Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ.

ISME J. 2011 Apr;5(4):717-27. doi: 10.1038/ismej.2010.173. Epub 2010 Nov 25.

PMID:
21107443
[PubMed - indexed for MEDLINE]
Free PMC Article
17.

Novel highly reactive and regenerable carbon/iron composites prepared from tar and hematite for the reduction of Cr(VI) contaminant.

Magalhães F, Pereira MC, Fabris JD, Bottrel SE, Sansiviero MT, Amaya A, Tancredi N, Lago RM.

J Hazard Mater. 2009 Jun 15;165(1-3):1016-22. doi: 10.1016/j.jhazmat.2008.10.087. Epub 2008 Oct 31.

PMID:
19097689
[PubMed - indexed for MEDLINE]
18.

Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens.

Yan B, Wrenn BA, Basak S, Biswas P, Giammar DE.

Environ Sci Technol. 2008 Sep 1;42(17):6526-31.

PMID:
18800525
[PubMed - indexed for MEDLINE]
19.

Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria.

Miot J, Benzerara K, Obst M, Kappler A, Hegler F, Schädler S, Bouchez C, Guyot F, Morin G.

Appl Environ Microbiol. 2009 Sep;75(17):5586-91. doi: 10.1128/AEM.00490-09. Epub 2009 Jul 10.

PMID:
19592528
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

A new look at microbial leaching patterns on sulfide minerals.

Edwards KJ, Hu B, Hamers RJ, Banfield JF.

FEMS Microbiol Ecol. 2001 Jan;34(3):197-206.

PMID:
11137599
[PubMed - as supplied by publisher]
Free Article
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk