Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 195

Similar articles for PubMed (Select 19765713)

1.

Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.

Zhao R, Wyss K, Simmons CA.

J Biomech. 2009 Dec 11;42(16):2768-73. doi: 10.1016/j.jbiomech.2009.07.035. Epub 2009 Sep 17.

PMID:
19765713
2.
3.

Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.

Baaijens FP, Trickey WR, Laursen TA, Guilak F.

Ann Biomed Eng. 2005 Apr;33(4):494-501.

PMID:
15909655
4.

A simple method to estimate the exponential material parameters of heart valve tissue based on analogy between uniaxial tension and micropipette aspiration.

Zhao R, Simmons CA.

Biomech Model Mechanobiol. 2013 Nov;12(6):1283-90. doi: 10.1007/s10237-013-0470-7. Epub 2013 Jan 26.

PMID:
23355188
5.

Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.

Chawla A, Mukherjee S, Karthikeyan B.

Biomech Model Mechanobiol. 2009 Feb;8(1):67-76. doi: 10.1007/s10237-008-0121-6. Epub 2008 Feb 22.

PMID:
18293021
6.

A power-law rheology-based finite element model for single cell deformation.

Zhou EH, Xu F, Quek ST, Lim CT.

Biomech Model Mechanobiol. 2012 Sep;11(7):1075-84. doi: 10.1007/s10237-012-0374-y. Epub 2012 Feb 4.

PMID:
22307682
7.

Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.

Sato M, Theret DP, Wheeler LT, Ohshima N, Nerem RM.

J Biomech Eng. 1990 Aug;112(3):263-8.

PMID:
2214707
9.

Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration.

Trickey WR, Baaijens FP, Laursen TA, Alexopoulos LG, Guilak F.

J Biomech. 2006;39(1):78-87. Epub 2005 Jan 13.

PMID:
16271590
10.
11.

Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.

Macneil JA, Boyd SK.

Bone. 2008 Jun;42(6):1203-13. doi: 10.1016/j.bone.2008.01.017. Epub 2008 Feb 13.

PMID:
18358799
12.

Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration.

Zhao R, Sider KL, Simmons CA.

Acta Biomater. 2011 Mar;7(3):1220-7. doi: 10.1016/j.actbio.2010.11.004. Epub 2010 Nov 4.

PMID:
21056128
13.

Characterization of cell mechanical properties by computational modeling of parallel plate compression.

McGarry JP.

Ann Biomed Eng. 2009 Nov;37(11):2317-25. doi: 10.1007/s10439-009-9772-4. Epub 2009 Aug 14.

PMID:
19680813
14.

Recent advances in analytical modeling of lumbar disc degeneration.

Natarajan RN, Williams JR, Andersson GB.

Spine (Phila Pa 1976). 2004 Dec 1;29(23):2733-41. Review.

PMID:
15564922
15.

Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress.

Sato M, Ohshima N, Nerem RM.

J Biomech. 1996 Apr;29(4):461-7.

PMID:
8964775
16.
17.

Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.

Hsieh AH, Wagner DR, Cheng LY, Lotz JC.

J Biomech Eng. 2005 Dec;127(7):1158-67.

PMID:
16502658
18.

Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.

Ahn B, Kim J.

Med Image Anal. 2010 Apr;14(2):138-48. doi: 10.1016/j.media.2009.10.006. Epub 2009 Nov 5.

PMID:
19948423
19.
20.

Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.

Halloran JP, Easley SK, Petrella AJ, Rullkoetter PJ.

J Biomech Eng. 2005 Oct;127(5):813-8.

PMID:
16248311
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk