Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Force and premature binding of ADP can regulate the processivity of individual Eg5 dimers.

Valentine MT, Block SM.

Biophys J. 2009 Sep 16;97(6):1671-7. doi: 10.1016/j.bpj.2009.07.013.

2.

Getting in sync with dimeric Eg5. Initiation and regulation of the processive run.

Krzysiak TC, Grabe M, Gilbert SP.

J Biol Chem. 2008 Jan 25;283(4):2078-87. Epub 2007 Nov 25.

3.

Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro.

Valentine MT, Fordyce PM, Krzysiak TC, Gilbert SP, Block SM.

Nat Cell Biol. 2006 May;8(5):470-6. Epub 2006 Apr 2.

4.

Dimeric Eg5 maintains processivity through alternating-site catalysis with rate-limiting ATP hydrolysis.

Krzysiak TC, Gilbert SP.

J Biol Chem. 2006 Dec 22;281(51):39444-54. Epub 2006 Oct 23.

5.

The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5.

Waitzman JS, Larson AG, Cochran JC, Naber N, Cooke R, Jon Kull F, Pate E, Rice SE.

Biophys J. 2011 Dec 7;101(11):2760-9. doi: 10.1016/j.bpj.2011.10.032.

6.

Monastrol inhibition of the mitotic kinesin Eg5.

Cochran JC, Gatial JE 3rd, Kapoor TM, Gilbert SP.

J Biol Chem. 2005 Apr 1;280(13):12658-67. Epub 2005 Jan 23.

7.

Stepping and stretching. How kinesin uses internal strain to walk processively.

Rosenfeld SS, Fordyce PM, Jefferson GM, King PH, Block SM.

J Biol Chem. 2003 May 16;278(20):18550-6. Epub 2003 Mar 6.

8.

A structural model for monastrol inhibition of dimeric kinesin Eg5.

Krzysiak TC, Wendt T, Sproul LR, Tittmann P, Gross H, Gilbert SP, Hoenger A.

EMBO J. 2006 May 17;25(10):2263-73. Epub 2006 Apr 27.

9.

Pathway of ATP hydrolysis by monomeric and dimeric kinesin.

Moyer ML, Gilbert SP, Johnson KA.

Biochemistry. 1998 Jan 20;37(3):800-13.

PMID:
9454569
10.

Disparity in allosteric interactions of monastrol with Eg5 in the presence of ADP and ATP: a difference FT-IR investigation.

Wojcik EJ, Dalrymple NA, Alford SR, Walker RA, Kim S.

Biochemistry. 2004 Aug 10;43(31):9939-49.

PMID:
15287721
11.

Kinetics processivity and the direction of motion of Ncd.

Pechatnikova E, Taylor EW.

Biophys J. 1999 Aug;77(2):1003-16.

12.

Fast or Slow, Either Head Can Start the Processive Run of Kinesin-2 KIF3AC.

Zhang P, Rayment I, Gilbert SP.

J Biol Chem. 2016 Feb 26;291(9):4407-16. doi: 10.1074/jbc.M115.705970. Epub 2015 Dec 28.

PMID:
26710851
13.

Mechanistic analysis of the mitotic kinesin Eg5.

Cochran JC, Sontag CA, Maliga Z, Kapoor TM, Correia JJ, Gilbert SP.

J Biol Chem. 2004 Sep 10;279(37):38861-70. Epub 2004 Jul 6.

14.

Loading direction regulates the affinity of ADP for kinesin.

Uemura S, Ishiwata S.

Nat Struct Biol. 2003 Apr;10(4):308-11.

PMID:
12640444
15.

Release of isolated single kinesin molecules from microtubules.

Vugmeyster Y, Berliner E, Gelles J.

Biochemistry. 1998 Jan 13;37(2):747-57.

PMID:
9425099
16.

Kinesin processivity is gated by phosphate release.

Milic B, Andreasson JO, Hancock WO, Block SM.

Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14136-40. doi: 10.1073/pnas.1410943111. Epub 2014 Sep 2.

17.

Kinetics and motility of the Eg5 microtubule motor.

Lockhart A, Cross RA.

Biochemistry. 1996 Feb 20;35(7):2365-73.

PMID:
8652578
18.

Pathway of processive ATP hydrolysis by kinesin.

Gilbert SP, Webb MR, Brune M, Johnson KA.

Nature. 1995 Feb 23;373(6516):671-6.

19.

Kinesin-2 KIF3AB exhibits novel ATPase characteristics.

Albracht CD, Rank KC, Obrzut S, Rayment I, Gilbert SP.

J Biol Chem. 2014 Oct 3;289(40):27836-48. doi: 10.1074/jbc.M114.583914. Epub 2014 Aug 13.

20.

Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.

Atherton J, Farabella I, Yu IM, Rosenfeld SS, Houdusse A, Topf M, Moores CA.

Elife. 2014 Sep 10;3:e03680. doi: 10.7554/eLife.03680.

Items per page

Supplemental Content

Write to the Help Desk