Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Similar articles for PubMed (Select 19735877)

1.

A novel murine model for localized radiation necrosis and its characterization using advanced magnetic resonance imaging.

Jost SC, Hope A, Kiehl E, Perry A, Travers S, Garbow JR.

Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):527-33. doi: 10.1016/j.ijrobp.2009.06.007.

2.

Quantitative magnetic resonance and isotopic imaging: early evaluation of radiation injury to the brain.

Miot E, Hoffschir D, Pontvert D, Gaboriaud G, Alapetite C, Masse R, Fetissof F, Le Pape A, Akoka S.

Int J Radiat Oncol Biol Phys. 1995 Apr 30;32(1):121-8.

PMID:
7721608
3.

Toward distinguishing recurrent tumor from radiation necrosis: DWI and MTC in a Gamma Knife--irradiated mouse glioma model.

Perez-Torres CJ, Engelbach JA, Cates J, Thotala D, Yuan L, Schmidt RE, Rich KM, Drzymala RE, Ackerman JJ, Garbow JR.

Int J Radiat Oncol Biol Phys. 2014 Oct 1;90(2):446-53. doi: 10.1016/j.ijrobp.2014.06.015. Epub 2014 Aug 4.

PMID:
25104071
4.

A GSK-3β inhibitor protects against radiation necrosis in mouse brain.

Jiang X, Perez-Torres CJ, Thotala D, Engelbach JA, Yuan L, Cates J, Gao F, Drzymala RE, Rich KM, Schmidt RE, Ackerman JJ, Hallahan DE, Garbow JR.

Int J Radiat Oncol Biol Phys. 2014 Jul 15;89(4):714-21. doi: 10.1016/j.ijrobp.2014.04.018.

5.

Effect of ionizing radiation on the human brain: white matter and gray matter T1 in pediatric brain tumor patients treated with conformal radiation therapy.

Steen RG, Koury B S M, Granja CI, Xiong X, Wu S, Glass JO, Mulhern RK, Kun LE, Merchant TE.

Int J Radiat Oncol Biol Phys. 2001 Jan 1;49(1):79-91.

PMID:
11163500
6.

Cerebral radiation injury and changes in the brain tissues of rat models with glioma.

Sha L, Cao Q, Lv L, Fan G.

Tumour Biol. 2014 Mar;35(3):2379-82. doi: 10.1007/s13277-013-1314-x. Epub 2013 Nov 7.

PMID:
24197979
7.

Anti-VEGF antibodies mitigate the development of radiation necrosis in mouse brain.

Jiang X, Engelbach JA, Yuan L, Cates J, Gao F, Drzymala RE, Hallahan DE, Rich KM, Schmidt RE, Ackerman JJ, Garbow JR.

Clin Cancer Res. 2014 May 15;20(10):2695-702. doi: 10.1158/1078-0432.CCR-13-1941. Epub 2014 Mar 19.

8.

Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence.

Shah R, Vattoth S, Jacob R, Manzil FF, O'Malley JP, Borghei P, Patel BN, Curé JK.

Radiographics. 2012 Sep-Oct;32(5):1343-59. doi: 10.1148/rg.325125002.

PMID:
22977022
9.

Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy.

Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, Zarudzki L.

Folia Neuropathol. 2010;48(2):81-92.

PMID:
20602289
10.
11.

Development of a novel animal model to differentiate radiation necrosis from tumor recurrence.

Kumar S, Arbab AS, Jain R, Kim J, deCarvalho AC, Shankar A, Mikkelsen T, Brown SL.

J Neurooncol. 2012 Jul;108(3):411-20. doi: 10.1007/s11060-012-0846-z. Epub 2012 Mar 10. Erratum in: J Neurooncol. 2012 Jul;108(3):421.

12.

Differentiation between recurrent tumor and radiation necrosis in a child with anaplastic ependymoma after chemotherapy and radiation therapy.

Beuthien-Baumann B, Hahn G, Winkler C, Heubner G.

Strahlenther Onkol. 2003 Dec;179(12):819-22.

PMID:
14652670
13.

Serial MR imaging of intracranial metastases after radiosurgery.

Hawighorst H, Essig M, Debus J, Knopp MV, Engenhart-Cabilic R, Schönberg SO, Brix G, Zuna I, van Kaick G.

Magn Reson Imaging. 1997;15(10):1121-32.

PMID:
9408133
14.

White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor.

Fouladi M, Chintagumpala M, Laningham FH, Ashley D, Kellie SJ, Langston JW, McCluggage CW, Woo S, Kocak M, Krull K, Kun LE, Mulhern RK, Gajjar A.

J Clin Oncol. 2004 Nov 15;22(22):4551-60.

15.

Proton MR spectroscopy of delayed cerebral radiation in monkeys and humans after brachytherapy.

Kinoshita K, Tada E, Matsumoto K, Asari S, Ohmoto T, Itoh T.

AJNR Am J Neuroradiol. 1997 Oct;18(9):1753-61.

16.

Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.

Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S.

Radiology. 2009 Nov;253(2):486-96. doi: 10.1148/radiol.2532090007. Epub 2009 Sep 29.

17.

Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful?

Forsyth PA, Kelly PJ, Cascino TL, Scheithauer BW, Shaw EG, Dinapoli RP, Atkinson EJ.

J Neurosurg. 1995 Mar;82(3):436-44.

PMID:
7861222
18.

Experimental MR study of cerebral radiation injury: quantitative T2 changes over time and histopathologic correlation.

Miot E, Hoffschir D, Alapetite C, Gaboriaud G, Pontvert D, Fetissof F, Le Pape A, Akoka S.

AJNR Am J Neuroradiol. 1995 Jan;16(1):79-85.

19.

Magnetic resonance imaging as a monitor of changes in the irradiated rat brain. An aid in determining the time course of events in a histologic study.

Kennedy AS, Archambeau JO, Archambeau MH, Holshouser B, Thompson J, Moyers M, Hinshaw D Jr, Slater JM.

Invest Radiol. 1995 Apr;30(4):214-20.

PMID:
7635670
20.

A study of radiation necrosis and edema in the canine brain using positron emission tomography and magnetic resonance imaging.

Brennan KM, Roos MS, Budinger TF, Higgins RJ, Wong ST, Bristol KS.

Radiat Res. 1993 Apr;134(1):43-53.

PMID:
8475253
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk