Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Shape and evolution of thermostable protein structure.

Coleman RG, Sharp KA.

Proteins. 2010 Feb 1;78(2):420-33. doi: 10.1002/prot.22558.

2.

Thermodynamic stability and folding of proteins from hyperthermophilic organisms.

Luke KA, Higgins CL, Wittung-Stafshede P.

FEBS J. 2007 Aug;274(16):4023-33. Review.

3.

An alternate conformation of the hyperthermostable HU protein from Thermotoga maritima has unexpectedly high flexibility.

Durney MA, Wechselberger RW, Kalodimos CG, Kaptein R, Vorgias CE, Boelens R.

FEBS Lett. 2004 Apr 9;563(1-3):49-54.

4.

Sequence based residue depth prediction using evolutionary information and predicted secondary structure.

Zhang H, Zhang T, Chen K, Shen S, Ruan J, Kurgan L.

BMC Bioinformatics. 2008 Sep 20;9:388. doi: 10.1186/1471-2105-9-388.

5.

An electrostatic basis for the stability of thermophilic proteins.

Dominy BN, Minoux H, Brooks CL 3rd.

Proteins. 2004 Oct 1;57(1):128-41.

PMID:
15326599
7.
8.
9.

NMR structure determination of the conserved hypothetical protein TM1816 from Thermotoga maritima.

Columbus L, Peti W, Etezady-Esfarjani T, Herrmann T, W├╝thrich K.

Proteins. 2005 Aug 15;60(3):552-7. No abstract available.

PMID:
15937903
10.

Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima.

Consalvi V, Chiaraluce R, Giangiacomo L, Scandurra R, Christova P, Karshikoff A, Knapp S, Ladenstein R.

Protein Eng. 2000 Jul;13(7):501-7.

11.
12.
13.

Residue depth: a novel parameter for the analysis of protein structure and stability.

Chakravarty S, Varadarajan R.

Structure. 1999 Jul 15;7(7):723-32.

14.

Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8.

Ihsanawati, Kumasaka T, Kaneko T, Morokuma C, Yatsunami R, Sato T, Nakamura S, Tanaka N.

Proteins. 2005 Dec 1;61(4):999-1009.

PMID:
16247799
15.
16.
17.

Statistical and molecular dynamics studies of buried waters in globular proteins.

Park S, Saven JG.

Proteins. 2005 Aug 15;60(3):450-63.

PMID:
15937899
18.

The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures.

Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, Backmann J, Martial JA, Wyns L, Jaenicke R, Wierenga RK.

Proteins. 1999 Nov 15;37(3):441-53.

PMID:
10591103
19.

Discrimination of thermophilic and mesophilic proteins.

Taylor TJ, Vaisman II.

BMC Struct Biol. 2010 May 17;10 Suppl 1:S5. doi: 10.1186/1472-6807-10-S1-S5.

20.

Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase.

Hashimoto H, Inoue T, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Kai Y.

J Mol Biol. 1999 Sep 24;292(3):707-16.

PMID:
10497033
Items per page

Supplemental Content

Write to the Help Desk