Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 115

Related Citations for PubMed (Select 19692605)

1.

Neocortical networks entrain neuronal circuits in cerebellar cortex.

Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA.

J Neurosci. 2009 Aug 19;29(33):10309-20. doi: 10.1523/JNEUROSCI.2327-09.2009.

2.

Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations.

Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsáki G.

Neuron. 2006 Dec 7;52(5):871-82.

3.

Long-range correlation of the membrane potential in neocortical neurons during slow oscillation.

Volgushev M, Chauvette S, Timofeev I.

Prog Brain Res. 2011;193:181-99. doi: 10.1016/B978-0-444-53839-0.00012-0.

4.

Linking oscillations in cerebellar circuits.

Courtemanche R, Robinson JC, Aponte DI.

Front Neural Circuits. 2013 Jul 29;7:125. doi: 10.3389/fncir.2013.00125. eCollection 2013. Review.

5.

Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer.

Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T.

PLoS Comput Biol. 2011 Jul;7(7):e1002087. doi: 10.1371/journal.pcbi.1002087. Epub 2011 Jul 14.

6.

Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.

Mölle M, Yeshenko O, Marshall L, Sara SJ, Born J.

J Neurophysiol. 2006 Jul;96(1):62-70. Epub 2006 Apr 12.

7.

Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected].

Volgushev M, Chauvette S, Mukovski M, Timofeev I.

J Neurosci. 2006 May 24;26(21):5665-72. Erratum in: J Neurosci. 2006 Jun 21;26(25):table of contents.

8.

Endogenous electric fields may guide neocortical network activity.

Fröhlich F, McCormick DA.

Neuron. 2010 Jul 15;67(1):129-43. doi: 10.1016/j.neuron.2010.06.005.

9.

Origin of active states in local neocortical networks during slow sleep oscillation.

Chauvette S, Volgushev M, Timofeev I.

Cereb Cortex. 2010 Nov;20(11):2660-74. doi: 10.1093/cercor/bhq009. Epub 2010 Mar 3.

10.

Cortico-cerebellar coherence and causal connectivity during slow-wave activity.

Rowland NC, Goldberg JA, Jaeger D.

Neuroscience. 2010 Mar 17;166(2):698-711. doi: 10.1016/j.neuroscience.2009.12.048. Epub 2009 Dec 29.

11.

Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice.

Cheron G, Gall D, Servais L, Dan B, Maex R, Schiffmann SN.

J Neurosci. 2004 Jan 14;24(2):434-41.

12.

Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition.

Haider B, Duque A, Hasenstaub AR, McCormick DA.

J Neurosci. 2006 Apr 26;26(17):4535-45.

13.

Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex.

Fucke T, Suchanek D, Nawrot MP, Seamari Y, Heck DH, Aertsen A, Boucsein C.

J Neurophysiol. 2011 Dec;106(6):3035-44. doi: 10.1152/jn.00811.2010. Epub 2011 Aug 17.

14.

Altered neocortical rhythmic activity states in Fmr1 KO mice are due to enhanced mGluR5 signaling and involve changes in excitatory circuitry.

Hays SA, Huber KM, Gibson JR.

J Neurosci. 2011 Oct 5;31(40):14223-34. doi: 10.1523/JNEUROSCI.3157-11.2011.

16.

Cellular and network mechanisms of rhythmic recurrent activity in neocortex.

Sanchez-Vives MV, McCormick DA.

Nat Neurosci. 2000 Oct;3(10):1027-34.

PMID:
11017176
17.

Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates.

Grenier F, Timofeev I, Steriade M.

J Neurophysiol. 2001 Oct;86(4):1884-98.

18.

Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat.

Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, Matsuzaka Y, Yawo H, Mushiake H.

Neurosci Res. 2013 Jan;75(1):35-45. doi: 10.1016/j.neures.2012.10.007. Epub 2012 Nov 12.

PMID:
23154073
19.

Spontaneous high-frequency (10-80 Hz) oscillations during up states in the cerebral cortex in vitro.

Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV.

J Neurosci. 2008 Dec 17;28(51):13828-44. doi: 10.1523/JNEUROSCI.2684-08.2008.

20.

Neuronal oscillations in Golgi cells and Purkinje cells are accompanied by decreases in Shannon information entropy.

Huang JJ, Yen CT, Tsao HW, Tsai ML, Huang C.

Cerebellum. 2014 Feb;13(1):97-108. doi: 10.1007/s12311-013-0523-6.

PMID:
24057318
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk