Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 768

1.

Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.

Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE.

Microbiology. 2009 Oct;155(Pt 10):3348-61. doi: 10.1099/mic.0.031153-0. Epub 2009 Jul 16.

PMID:
19608612
2.

Polyphosphate accumulation by Pseudomonas putida CA-3 and other medium-chain-length polyhydroxyalkanoate-accumulating bacteria under aerobic growth conditions.

Tobin KM, McGrath JW, Mullan A, Quinn JP, O'Connor KE.

Appl Environ Microbiol. 2007 Feb;73(4):1383-7. Epub 2006 Dec 8.

4.

Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.

O'Leary ND, O'Connor KE, Ward P, Goff M, Dobson AD.

Appl Environ Microbiol. 2005 Aug;71(8):4380-7.

5.

The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach.

Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Lam CM, Schomburg D, Prieto MA, Martins dos Santos VA.

Microb Cell Fact. 2012 Mar 20;11:34. doi: 10.1186/1475-2859-11-34.

6.

Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.

Ward PG, de Roo G, O'Connor KE.

Appl Environ Microbiol. 2005 Apr;71(4):2046-52.

7.

Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach.

Cao B, Loh KC.

Biotechnol Bioeng. 2008 Dec 15;101(6):1297-312. doi: 10.1002/bit.21997.

PMID:
18980183
8.

Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy.

Kurbatov L, Albrecht D, Herrmann H, Petruschka L.

Environ Microbiol. 2006 Mar;8(3):466-78.

PMID:
16478453
9.
10.

Proteome analysis of cellular response of Pseudomonas putida KT2440 to tetracycline stress.

Yun SH, Kim YH, Joo EJ, Choi JS, Sohn JH, Kim SI.

Curr Microbiol. 2006 Aug;53(2):95-101. Epub 2006 Jul 10.

PMID:
16832729
11.

Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3.

Dunn HD, Curtin T, O'riordan MA, Coen P, Kieran PM, Malone DM, O'Connor KE.

FEMS Microbiol Lett. 2005 Aug 15;249(2):267-73.

12.
13.

Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics.

Santos PM, Benndorf D, Sá-Correia I.

Proteomics. 2004 Sep;4(9):2640-52.

PMID:
15352239
14.
15.

The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.

de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA.

Environ Microbiol. 2010 Jan;12(1):207-21. doi: 10.1111/j.1462-2920.2009.02061.x. Epub 2009 Sep 29.

PMID:
19788655
16.

Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge.

Thompson DK, Chourey K, Wickham GS, Thieman SB, VerBerkmoes NC, Zhang B, McCarthy AT, Rudisill MA, Shah M, Hettich RL.

BMC Genomics. 2010 May 19;11:311. doi: 10.1186/1471-2164-11-311.

18.

Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440.

Sun Z, Ramsay JA, Guay M, Ramsay BA.

Appl Microbiol Biotechnol. 2007 Feb;74(1):69-77. Epub 2006 Oct 25.

PMID:
17063330
19.
20.

Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.

Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A.

FEBS J. 2008 Oct;275(20):5173-90. doi: 10.1111/j.1742-4658.2008.06648.x. Epub 2008 Sep 18.

Items per page

Supplemental Content

Write to the Help Desk