Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 101

Similar articles for PubMed (Select 19603776)

1.

Hydrogen activation by biomimetic diiron dithiolates.

Olsen MT, Barton BE, Rauchfuss TB.

Inorg Chem. 2009 Aug 17;48(16):7507-9. doi: 10.1021/ic900850u.

2.

Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases.

Barton BE, Zampella G, Justice AK, De Gioia L, Rauchfuss TB, Wilson SR.

Dalton Trans. 2010 Mar 28;39(12):3011-9. doi: 10.1039/b910147k. Epub 2009 Sep 16.

3.

Nitrosyl derivatives of diiron(I) dithiolates mimic the structure and Lewis acidity of the [FeFe]-hydrogenase active site.

Olsen MT, Bruschi M, De Gioia L, Rauchfuss TB, Wilson SR.

J Am Chem Soc. 2008 Sep 10;130(36):12021-30. doi: 10.1021/ja802268p. Epub 2008 Aug 14.

4.

Diiron dithiolato carbonyls related to the H(ox)CO state of [FeFe]-hydrogenase.

Justice AK, Nilges MJ, Rauchfuss TB, Wilson SR, De Gioia L, Zampella G.

J Am Chem Soc. 2008 Apr 16;130(15):5293-301. doi: 10.1021/ja7113008. Epub 2008 Mar 15.

5.

New nitrosyl derivatives of diiron dithiolates related to the active site of the [FeFe]-hydrogenases.

Olsen MT, Justice AK, Gloaguen F, Rauchfuss TB, Wilson SR.

Inorg Chem. 2008 Dec 15;47(24):11816-24. doi: 10.1021/ic801542w.

6.

Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride.

Barton BE, Rauchfuss TB.

Inorg Chem. 2008 Apr 7;47(7):2261-3. doi: 10.1021/ic800030y. Epub 2008 Mar 12.

7.

Redox and structural properties of mixed-valence models for the active site of the [FeFe]-hydrogenase: progress and challenges.

Justice AK, De Gioia L, Nilges MJ, Rauchfuss TB, Wilson SR, Zampella G.

Inorg Chem. 2008 Aug 18;47(16):7405-14. doi: 10.1021/ic8007552. Epub 2008 Jul 12.

8.

Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)].

Song LC, Li CG, Ge JH, Yang ZY, Wang HT, Zhang J, Hu QM.

J Inorg Biochem. 2008 Nov;102(11):1973-9. doi: 10.1016/j.jinorgbio.2008.04.003. Epub 2008 Apr 26.

PMID:
18783833
9.

[Fe2(SR)2(mu-CO)(CNMe)6]2+ and analogues: a new class of diiron dithiolates as structural models for the H(ox)Air state of the fe-only hydrogenase.

Boyke CA, Rauchfuss TB, Wilson SR, Rohmer MM, Bénard M.

J Am Chem Soc. 2004 Nov 24;126(46):15151-60.

PMID:
15548012
10.

Stereochemistry of electrophilic attack at 34e⁻ dimetallic complexes: the case of diiron dithiolato carbonyls + MeS⁺.

Olsen MT, Gray DL, Rauchfuss TB, De Gioia L, Zampella G.

Chem Commun (Camb). 2011 Jun 21;47(23):6554-6.

11.

Synthesis, structure, and electrocatalysis of diiron C-functionalized propanedithiolate (PDT) complexes related to the active site of [FeFe]-hydrogenases.

Song LC, Li CG, Gao J, Yin BS, Luo X, Zhang XG, Bao HL, Hu QM.

Inorg Chem. 2008 Jun 2;47(11):4545-53. doi: 10.1021/ic701982z. Epub 2008 Apr 26.

PMID:
18439002
12.

Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes.

Zhao X, Georgakaki IP, Miller ML, Mejia-Rodriguez R, Chiang CY, Darensbourg MY.

Inorg Chem. 2002 Jul 29;41(15):3917-28.

PMID:
12132916
13.

Hydrogen activation by biomimetic [NiFe]-hydrogenase model containing protected cyanide cofactors.

Manor BC, Rauchfuss TB.

J Am Chem Soc. 2013 Aug 14;135(32):11895-900. doi: 10.1021/ja404580r. Epub 2013 Jul 30.

14.

Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution.

Bertini L, Fantucci P, De Gioia L, Zampella G.

Inorg Chem. 2013 Sep 3;52(17):9826-41. doi: 10.1021/ic400818t. Epub 2013 Aug 16.

PMID:
23952259
15.

Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential.

Yu Z, Wang M, Li P, Dong W, Wang F, Sun L.

Dalton Trans. 2008 May 14;(18):2400-6. doi: 10.1039/b715990k. Epub 2008 Mar 7.

PMID:
18461194
16.

The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes.

Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY.

J Am Chem Soc. 2004 Sep 29;126(38):12004-14.

PMID:
15382935
17.

A proton-hydride diiron complex with a base-containing diphosphine ligand relevant to the [FeFe]-hydrogenase active site.

Wang N, Wang M, Zhang T, Li P, Liu J, Sun L.

Chem Commun (Camb). 2008 Nov 30;(44):5800-2. doi: 10.1039/b811352a. Epub 2008 Oct 1.

PMID:
19009086
18.

Dihydrogen activation by a diruthenium analogue of the Fe-only hydrogenase active site.

Justice AK, Linck RC, Rauchfuss TB, Wilson SR.

J Am Chem Soc. 2004 Oct 20;126(41):13214-5.

PMID:
15479062
19.

Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures.

Schilter D, Rauchfuss TB, Stein M.

Inorg Chem. 2012 Aug 20;51(16):8931-41. doi: 10.1021/ic300910r. Epub 2012 Jul 27.

20.

Coordination chemistry of [HFe(CN)(2)(CO)(3)](-) and its derivatives: toward a model for the iron subsite of the [NiFe]-hydrogenases.

Whaley CM, Rauchfuss TB, Wilson SR.

Inorg Chem. 2009 May 18;48(10):4462-9. doi: 10.1021/ic900200s.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk