Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 147

1.

Ultrafast optical delay line using soliton propagation between a time-prism pair.

van Howe J, Xu C.

Opt Express. 2005 Feb 21;13(4):1138-43.

PMID:
19494982
[PubMed]
2.

Ultrafast optical delay line by use of a time-prism pair.

van Howe J, Xu C.

Opt Lett. 2005 Jan 1;30(1):99-101.

PMID:
15648651
[PubMed]
3.

Tunable optical time delay of quantum signals using a prism pair.

Gehring GM, Shin H, Boyd RW, Kim CM, Ham BS.

Opt Express. 2010 Aug 30;18(18):19156-62. doi: 10.1364/OE.18.019156.

PMID:
20940810
[PubMed]
4.
5.

Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter.

Krcmarík D, Slavík R, Park Y, Azaña J.

Opt Express. 2009 Apr 27;17(9):7074-87.

PMID:
19399083
[PubMed - indexed for MEDLINE]
6.

Prism-pair dispersive delay lines in optical pulse compression.

Kafka JD, Baer T.

Opt Lett. 1987 Jun 1;12(6):401-3.

PMID:
19741745
[PubMed]
7.

All-fiber tunable optical delay line.

Caucheteur C, Mussot A, Bette S, Kudlinski A, Douay M, Louvergneaux E, Mégret P, Taki M, Gonz Lez-Herrāez M.

Opt Express. 2010 Feb 1;18(3):3093-100. doi: 10.1364/OE.18.003093.

PMID:
20174140
[PubMed]
8.

Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays.

Schneider T, Wiatrek A, Henker R.

Opt Express. 2008 Sep 29;16(20):15617-22.

PMID:
18825200
[PubMed]
9.

All-optical timing restoration using a hybrid time-domain chirp switch.

Islam MN, Soccolich CE, Ho ST, Slusher RE, Hobson WS, Levi AF.

Opt Lett. 1991 Jul 15;16(14):1116-8.

PMID:
19776894
[PubMed]
10.

Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element.

Chin S, Gonzalez-Herraez M, Thévenaz L.

Opt Express. 2009 Nov 23;17(24):21910-7. doi: 10.1364/OE.17.021910.

PMID:
19997435
[PubMed - indexed for MEDLINE]
11.
12.

Ultrafast all optical switching by use of pulse trapping across zero-dispersion wavelength.

Nishizawa N, Goto T.

Opt Express. 2003 Feb 24;11(4):359-65.

PMID:
19461742
[PubMed]
13.
14.

Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives.

Müller M, Squier J, Wolleschensky R, Simon U, Brakenhoff GJ.

J Microsc. 1998 Aug;191(2):141-150.

PMID:
9767477
[PubMed - as supplied by publisher]
15.

Generation of 33-fsec pulses at 1.32 microm through a high-order soliton effect in a single-mode optical fiber.

Gouveia-Neto AS, Gomes AS, Taylor JR.

Opt Lett. 1987 Jun 1;12(6):395-7.

PMID:
19741743
[PubMed]
16.

50 fs soliton compression of optical clock pulse recovered from NRZ data injected SOAFL.

Lin GR, Lin YC, Lin KC, Lee WY, Wu CL.

Opt Express. 2010 Apr 26;18(9):9525-30. doi: 10.1364/OE.18.009525.

PMID:
20588799
[PubMed]
17.

[Nonlinear chirp effect in a dispersion-slowly decreasing fiber].

Shen TG, Tan XL.

Guang Pu Xue Yu Guang Pu Fen Xi. 2003 Feb;23(1):35-7. Chinese.

PMID:
12939962
[PubMed]
18.

Chirp mechanisms in soliton-dragging logic gates.

Islam MN, Menyuk CR, Chen CJ, Soccolich CE.

Opt Lett. 1991 Feb 15;16(4):214-6.

PMID:
19773886
[PubMed]
20.

Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides.

Hsieh IW, Chen X, Dadap JI, Panoiu NC, Osgood RM, McNab SJ, Vlasov YA.

Opt Express. 2006 Dec 11;14(25):12380-7.

PMID:
19529669
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk