Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

GO4genome: a prokaryotic phylogeny based on genome organization.

Merkl R, Wiezer A.

J Mol Evol. 2009 May;68(5):550-62. doi: 10.1007/s00239-009-9233-6. Epub 2009 May 13.

2.

Genome trees constructed using five different approaches suggest new major bacterial clades.

Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV.

BMC Evol Biol. 2001 Oct 20;1:8.

3.

Highways of gene sharing in prokaryotes.

Beiko RG, Harlow TJ, Ragan MA.

Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14332-7. Epub 2005 Sep 21.

4.
6.

The balance of driving forces during genome evolution in prokaryotes.

Kunin V, Ouzounis CA.

Genome Res. 2003 Jul;13(7):1589-94.

7.

Genome-wide experimental determination of barriers to horizontal gene transfer.

Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM.

Science. 2007 Nov 30;318(5855):1449-52. Epub 2007 Oct 18.

8.

A close relationship between primary nucleotides sequence structure and the composition of functional genes in the genome of prokaryotes.

Garcia JA, Fernández-Guerra A, Casamayor EO.

Mol Phylogenet Evol. 2011 Dec;61(3):650-8. doi: 10.1016/j.ympev.2011.08.011. Epub 2011 Aug 16.

PMID:
21864693
9.

Anchor-based whole genome phylogeny (ABWGP): a tool for inferring evolutionary relationship among closely related microorganisms [corrected].

Vishnoi A, Roy R, Prasad HK, Bhattacharya A.

PLoS One. 2010 Nov 30;5(11):e14159. doi: 10.1371/journal.pone.0014159. Erratum in: PLoS One. 2010;5(12) doi: 10.1371/annotation/a56d6c19-b938-4733-8333-79ff48202414.

10.

On the need for widespread horizontal gene transfers under genome size constraint.

Isambert H, Stein RR.

Biol Direct. 2009 Aug 25;4:28. doi: 10.1186/1745-6150-4-28.

11.

Causes of insertion sequences abundance in prokaryotic genomes.

Touchon M, Rocha EP.

Mol Biol Evol. 2007 Apr;24(4):969-81. Epub 2007 Jan 23.

12.

Detection of operons.

Yan Y, Moult J.

Proteins. 2006 Aug 15;64(3):615-28.

PMID:
16755590
13.

Phylogenetic analysis based on genome-scale metabolic pathway reaction content.

Hong SH, Kim TY, Lee SY.

Appl Microbiol Biotechnol. 2004 Aug;65(2):203-10. Epub 2004 Jun 9.

PMID:
15197509
14.
15.

In silico prioritisation of candidate genes for prokaryotic gene function discovery: an application of phylogenetic profiles.

Lin FP, Coiera E, Lan R, Sintchenko V.

BMC Bioinformatics. 2009 Mar 17;10:86. doi: 10.1186/1471-2105-10-86.

16.

ComPhy: prokaryotic composite distance phylogenies inferred from whole-genome gene sets.

Lin GN, Cai Z, Lin G, Chakraborty S, Xu D.

BMC Bioinformatics. 2009 Jan 30;10 Suppl 1:S5. doi: 10.1186/1471-2105-10-S1-S5.

17.

A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm.

Podell S, Gaasterland T, Allen EE.

BMC Bioinformatics. 2008 Oct 7;9:419. doi: 10.1186/1471-2105-9-419.

18.

From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria.

Lerat E, Daubin V, Moran NA.

PLoS Biol. 2003 Oct;1(1):E19. Epub 2003 Sep 15.

20.

PSAT: a web tool to compare genomic neighborhoods of multiple prokaryotic genomes.

Fong C, Rohmer L, Radey M, Wasnick M, Brittnacher MJ.

BMC Bioinformatics. 2008 Mar 26;9:170. doi: 10.1186/1471-2105-9-170.

Items per page

Supplemental Content

Write to the Help Desk