Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 203

Related Citations for PubMed (Select 19410201)

1.

Ciliary defects and genetics of primary ciliary dyskinesia.

Escudier E, Duquesnoy P, Papon JF, Amselem S.

Paediatr Respir Rev. 2009 Jun;10(2):51-4. doi: 10.1016/j.prrv.2009.02.001. Epub 2009 Apr 18. Review.

PMID:
19410201
2.

Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia.

Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H.

Am J Respir Crit Care Med. 2005 Jun 15;171(12):1343-9. Epub 2005 Mar 4.

3.

Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia.

Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, Clément A, Goossens M, Amselem S, Duriez B.

Am J Hum Genet. 1999 Dec;65(6):1508-19.

4.

DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm.

Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, Kuhl H, Baktai G, Peterffy E, Chodhari R, Chung EM, Rutman A, O'Callaghan C, Blau H, Tiszlavicz L, Voelkel K, Witt M, Zietkiewicz E, Neesen J, Reinhardt R, Mitchison HM, Omran H.

Am J Hum Genet. 2008 Nov;83(5):547-58. doi: 10.1016/j.ajhg.2008.10.001. Epub 2008 Oct 23.

5.

Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms.

Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, Wolf WE, Carson JL, Hazucha MJ, Yin W, Davis SD, Dell SD, Ferkol TW, Sagel SD, Olivier KN, Jahnke C, Olbrich H, Werner C, Raidt J, Wallmeier J, Pennekamp P, Dougherty GW, Hjeij R, Gee HY, Otto EA, Halbritter J, Chaki M, Diaz KA, Braun DA, Porath JD, Schueler M, Baktai G, Griese M, Turner EH, Lewis AP, Bamshad MJ, Nickerson DA, Hildebrandt F, Shendure J, Omran H, Zariwala MA.

Am J Hum Genet. 2013 Oct 3;93(4):711-20. doi: 10.1016/j.ajhg.2013.07.025. Epub 2013 Sep 19.

6.

Genetic defects in ciliary structure and function.

Zariwala MA, Knowles MR, Omran H.

Annu Rev Physiol. 2007;69:423-50. Review.

PMID:
17059358
7.

Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure.

Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW, Olivier KN, Sagel SD, Rosenfeld M, Burns KA, Minnix SL, Armstrong MC, Lori A, Hazucha MJ, Loges NT, Olbrich H, Becker-Heck A, Schmidts M, Werner C, Omran H, Zariwala MA; Genetic Disorders of Mucociliary Clearance Consortium.

Thorax. 2012 May;67(5):433-41. doi: 10.1136/thoraxjnl-2011-200301. Epub 2011 Dec 18.

8.

Primary ciliary dyskinesia: clinical presentation, diagnosis and genetics.

Storm van's Gravesande K, Omran H.

Ann Med. 2005;37(6):439-49. Review.

PMID:
16203616
9.

Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome).

Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, Lalau G, Bouvagnet P.

Am J Hum Genet. 2001 Apr;68(4):1030-5. Epub 2001 Feb 23.

10.

Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia.

Olbrich H, Horváth J, Fekete A, Loges NT, Storm van's Gravesande K, Blum A, Hörmann K, Omran H.

Pediatr Res. 2006 Mar;59(3):418-22.

PMID:
16492982
11.

Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia.

Bartoloni L, Blouin JL, Maiti AK, Sainsbury A, Rossier C, Gehrig C, She JX, Marron MP, Lander ES, Meeks M, Chung E, Armengot M, Jorissen M, Scott HS, Delozier-Blanchet CD, Gardiner RM, Antonarakis SE.

Genomics. 2001 Feb 15;72(1):21-33.

PMID:
11247663
12.

Mutations in DNAH5 account for only 15% of a non-preselected cohort of patients with primary ciliary dyskinesia.

Failly M, Bartoloni L, Letourneau A, Munoz A, Falconnet E, Rossier C, de Santi MM, Santamaria F, Sacco O, DeLozier-Blanchet CD, Lazor R, Blouin JL.

J Med Genet. 2009 Apr;46(4):281-6. doi: 10.1136/jmg.2008.061176.

PMID:
19357118
13.

Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia.

Tan SY, Rosenthal J, Zhao XQ, Francis RJ, Chatterjee B, Sabol SL, Linask KL, Bracero L, Connelly PS, Daniels MP, Yu Q, Omran H, Leatherbury L, Lo CW.

J Clin Invest. 2007 Dec;117(12):3742-52.

14.

Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation.

Zariwala MA, Leigh MW, Ceppa F, Kennedy MP, Noone PG, Carson JL, Hazucha MJ, Lori A, Horvath J, Olbrich H, Loges NT, Bridoux AM, Pennarun G, Duriez B, Escudier E, Mitchison HM, Chodhari R, Chung EM, Morgan LC, de Iongh RU, Rutland J, Pradal U, Omran H, Amselem S, Knowles MR.

Am J Respir Crit Care Med. 2006 Oct 15;174(8):858-66. Epub 2006 Jul 20.

15.

Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm.

Onoufriadis A, Shoemark A, Munye MM, James CT, Schmidts M, Patel M, Rosser EM, Bacchelli C, Beales PL, Scambler PJ, Hart SL, Danke-Roelse JE, Sloper JJ, Hull S, Hogg C, Emes RD, Pals G, Moore AT, Chung EM; UK10K, Mitchison HM.

J Med Genet. 2014 Jan;51(1):61-7. doi: 10.1136/jmedgenet-2013-101938. Epub 2013 Nov 7.

16.

Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia.

Zariwala M, Noone PG, Sannuti A, Minnix S, Zhou Z, Leigh MW, Hazucha M, Carson JL, Knowles MR.

Am J Respir Cell Mol Biol. 2001 Nov;25(5):577-83.

PMID:
11713099
17.

Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia.

Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, Bartoloni L, Gallone G, Petridi S, Woollard WJ, Antony D, Schmidts M, Didonna T, Makrythanasis P, Bevillard J, Mongan NP, Djakow J, Pals G, Lucas JS, Marthin JK, Nielsen KG, Santoni F, Guipponi M, Hogg C, Antonarakis SE, Emes RD, Chung EM, Greene ND, Blouin JL, Jarman AP, Mitchison HM.

Am J Hum Genet. 2013 Aug 8;93(2):346-56. doi: 10.1016/j.ajhg.2013.07.009. Epub 2013 Jul 25.

18.

CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs.

Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen F, Clément A, Clercx C, Coste A, Crosbie R, de Blic J, Deleuze S, Duquesnoy P, Escalier D, Escudier E, Fliegauf M, Horvath J, Hill K, Jorissen M, Just J, Kispert A, Lathrop M, Loges NT, Marthin JK, Momozawa Y, Montantin G, Nielsen KG, Olbrich H, Papon JF, Rayet I, Roger G, Schmidts M, Tenreiro H, Towbin JA, Zelenika D, Zentgraf H, Georges M, Lequarré AS, Katsanis N, Omran H, Amselem S.

Nat Genet. 2011 Jan;43(1):72-8. doi: 10.1038/ng.726. Epub 2010 Dec 5.

19.

The human dynein intermediate chain 2 gene (DNAI2): cloning, mapping, expression pattern, and evaluation as a candidate for primary ciliary dyskinesia.

Pennarun G, Chapelin C, Escudier E, Bridoux AM, Dastot F, Cacheux V, Goossens M, Amselem S, Duriez B.

Hum Genet. 2000 Dec;107(6):642-9.

PMID:
11153919
20.

RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa.

Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, Clément A, Geremek M, Delaisi B, Bridoux AM, Coste A, Witt M, Duriez B, Amselem S.

J Med Genet. 2006 Apr;43(4):326-33. Epub 2005 Jul 31.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk