Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 116

Similar articles for PubMed (Select 19396957)

1.

Genesis, effects and fates of repeats in prokaryotic genomes.

Treangen TJ, Abraham AL, Touchon M, Rocha EP.

FEMS Microbiol Rev. 2009 May;33(3):539-71. Review.

2.

Origin and fate of repeats in bacteria.

Achaz G, Rocha EP, Netter P, Coissac E.

Nucleic Acids Res. 2002 Jul 1;30(13):2987-94.

3.

Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes.

Romero D, Martínez-Salazar J, Ortiz E, Rodríguez C, Valencia-Morales E.

Res Microbiol. 1999 Nov-Dec;150(9-10):735-43. Review.

PMID:
10673011
4.

PILER-CR: fast and accurate identification of CRISPR repeats.

Edgar RC.

BMC Bioinformatics. 2007 Jan 20;8:18.

5.

[Repeats in bacterial genomes: evolutionary considerations].

Smirnov GB.

Mol Gen Mikrobiol Virusol. 2010;(2):11-20. Review. Russian.

PMID:
20545043
6.

CRISPR/Cas, the immune system of bacteria and archaea.

Horvath P, Barrangou R.

Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555. Review.

PMID:
20056882
7.

Associations between inverted repeats and the structural evolution of bacterial genomes.

Achaz G, Coissac E, Netter P, Rocha EP.

Genetics. 2003 Aug;164(4):1279-89.

8.

Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria.

Mojica FJ, Díez-Villaseñor C, Soria E, Juez G.

Mol Microbiol. 2000 Apr;36(1):244-6. No abstract available.

PMID:
10760181
9.

Identification of a novel family of sequence repeats among prokaryotes.

Jansen R, van Embden JD, Gaastra W, Schouls LM.

OMICS. 2002;6(1):23-33.

PMID:
11883425
10.

Dynamic evolution of genomes and the concept of genome space.

Bellgard MI, Itoh T, Watanabe H, Imanishi T, Gojobori T.

Ann N Y Acad Sci. 1999 May 18;870:293-300. Review.

PMID:
10415491
12.

Study of intrachromosomal duplications among the eukaryote genomes.

Achaz G, Netter P, Coissac E.

Mol Biol Evol. 2001 Dec;18(12):2280-8.

13.
14.

Analysis of tandem repeats found in 44 prokaryotic genomes.

Mizuta S, Munakata H, Aimaiti A, Oya I, Oosawa K, Shimizu T.

In Silico Biol. 2006;6(1-2):147-59.

PMID:
17009421
15.

Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams.

Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K, Reimer JD, Kato C, Maruyama T.

Extremophiles. 2008 May;12(3):365-74. doi: 10.1007/s00792-008-0141-2. Epub 2008 Feb 28.

PMID:
18305898
16.

[Theoretical analysis of the DNA duplication mechanisms in the prokaryotic genomes on the basis of repeats].

Kolchanov NA, Solov'ev VV, Kel' AE.

Mol Biol (Mosk). 1989 Mar-Apr;23(2):537-44. Russian.

PMID:
2770730
17.

Remarkable sequence signatures in archaeal genomes.

Fadiel A, Lithwick S, Ganji G, Scherer SW.

Archaea. 2003 Oct;1(3):185-90.

18.

Alu elements as an aid in deciphering genome rearrangements.

Toda Y, Tomita M.

Gene. 1997 Dec 31;205(1-2):173-6.

PMID:
9461391
20.

Evolutionary patterns in prokaryotic genomes.

Rocha EP.

Curr Opin Microbiol. 2008 Oct;11(5):454-60. doi: 10.1016/j.mib.2008.09.007. Epub 2008 Oct 15. Review.

PMID:
18838127
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk