Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 66

1.

The nucleus inside out--through a rod darkly.

Ragoczy T, Groudine M.

Cell. 2009 Apr 17;137(2):205-7. doi: 10.1016/j.cell.2009.04.006.

2.

Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.

Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B.

Cell. 2009 Apr 17;137(2):356-68. doi: 10.1016/j.cell.2009.01.052.

4.

Physical insight into light scattering by photoreceptor cell nuclei.

Kreysing M, Boyde L, Guck J, Chalut KJ.

Opt Lett. 2010 Aug 1;35(15):2639-41. doi: 10.1364/OL.35.002639.

PMID:
20680084
5.

Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina.

Eberhart A, Feodorova Y, Song C, Wanner G, Kiseleva E, Furukawa T, Kimura H, Schotta G, Leonhardt H, Joffe B, Solovei I.

Chromosome Res. 2013 Aug;21(5):535-54. doi: 10.1007/s10577-013-9375-7. Epub 2013 Aug 31.

PMID:
23996328
6.

Mammalian vision: rods are a bargain.

Warrant EJ.

Curr Biol. 2009 Jan 27;19(2):R69-71. doi: 10.1016/j.cub.2008.11.031.

7.

Transduction gain in light adaptation of rod photoreceptors.

Pepperberg DR.

J Gen Physiol. 2001 Apr;117(4):361-6. No abstract available.

8.
9.

Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina.

Derlig K, Giessl A, Brandstätter JH, Enz R, Dahlhaus R.

Cell Tissue Res. 2015 Nov;362(2):281-94. doi: 10.1007/s00441-015-2204-x. Epub 2015 May 27.

PMID:
26013685
10.

Evaluation of viability of retinal photoreceptor cells by using their endogenous electrical field.

Kovács E, Pologea-Moraru R, Hosu BG.

Bioelectrochemistry. 2002 May 15;56(1-2):219-21.

PMID:
12009479
11.

When untethered, something silent inside comes.

Politz JC, Ragoczy T, Groudine M.

Nucleus. 2013 May-Jun;4(3):153-5. doi: 10.4161/nucl.24999. Epub 2013 May 15.

12.

The calculus of rod phototransduction.

Tranchina D.

J Gen Physiol. 1998 Jan;111(1):3-6. Review. No abstract available.

13.

Light-dependent compartmentalization of transducin in rod photoreceptors.

Artemyev NO.

Mol Neurobiol. 2008 Feb;37(1):44-51. doi: 10.1007/s12035-008-8015-2. Epub 2008 Apr 19. Review.

PMID:
18425604
14.

Variability in single photon responses: a cut in the Gordian knot of rod phototransduction?

Pugh EN Jr.

Neuron. 1999 Jun;23(2):205-8. No abstract available.

15.

Rod phototransduction determines the trade-off of temporal integration and speed of vision in dark-adapted toads.

Haldin C, Nymark S, Aho AC, Koskelainen A, Donner K.

J Neurosci. 2009 May 6;29(18):5716-25. doi: 10.1523/JNEUROSCI.3888-08.2009.

16.

[Regulation of phototransduction in rod cells by selective farnesylation of G-protein transducin: farnesyl as a molecular post-it].

Kassai H, Fukada Y.

Seikagaku. 2006 Jun;78(6):533-7. Review. Japanese. No abstract available.

PMID:
16856567
17.

Speedy rod signaling.

Markus A.

Nat Neurosci. 2010 Apr;13(4):410. doi: 10.1038/nn0410-410. No abstract available.

PMID:
20348939
18.

Vision: how to catch fast signals with slow detectors.

Demontis GC, Cervetto L.

News Physiol Sci. 2002 Jun;17:110-4. Review.

19.

Transducin in rod photoreceptors: translocated when not terminated.

Kalra D, Elsaesser R, Gu Y, Venkatachalam K.

J Neurosci. 2007 Jun 13;27(24):6349-51. Review. No abstract available.

20.

Depleting Rac1 in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function.

Haruta M, Bush RA, Kjellstrom S, Vijayasarathy C, Zeng Y, Le YZ, Sieving PA.

Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9397-402. doi: 10.1073/pnas.0808940106. Epub 2009 May 21.

Items per page

Supplemental Content

Write to the Help Desk