Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Energy gaps in etched graphene nanoribbons.

Stampfer C, Güttinger J, Hellmüller S, Molitor F, Ensslin K, Ihn T.

Phys Rev Lett. 2009 Feb 6;102(5):056403. Epub 2009 Feb 3.

PMID:
19257529
2.

Tunable graphene single electron transistor.

Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T, Ensslin K.

Nano Lett. 2008 Aug;8(8):2378-83. doi: 10.1021/nl801225h. Epub 2008 Jul 22.

PMID:
18642958
3.

Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons.

Shimizu T, Haruyama J, Marcano DC, Kosinkin DV, Tour JM, Hirose K, Suenaga K.

Nat Nanotechnol. 2011 Jan;6(1):45-50. doi: 10.1038/nnano.2010.249. Epub 2010 Dec 19.

PMID:
21170040
4.

Voltage-dependent conductance of a single graphene nanoribbon.

Koch M, Ample F, Joachim C, Grill L.

Nat Nanotechnol. 2012 Nov;7(11):713-7. doi: 10.1038/nnano.2012.169. Epub 2012 Oct 14.

PMID:
23064554
5.

Energy band-gap engineering of graphene nanoribbons.

Han MY, Ozyilmaz B, Zhang Y, Kim P.

Phys Rev Lett. 2007 May 18;98(20):206805. Epub 2007 May 16.

PMID:
17677729
6.

Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field.

Güttinger J, Stampfer C, Frey T, Ihn T, Ensslin K.

Nanoscale Res Lett. 2011 Mar 24;6(1):253. doi: 10.1186/1556-276X-6-253.

7.

The effect of interlayer coupling on electron transport in graphene nanoribbons: a potential method for nanoposition sensing.

Wang J, Lin Z, Chan KS.

J Phys Condens Matter. 2014 Apr 2;26(13):135301. doi: 10.1088/0953-8984/26/13/135301. Epub 2014 Mar 11.

PMID:
24614133
8.

Quantum transport in graphene nanonetworks.

Botello-Méndez AR, Cruz-Silva E, Romo-Herrera JM, López-Urías F, Terrones M, Sumpter BG, Terrones H, Charlier JC, Meunier V.

Nano Lett. 2011 Aug 10;11(8):3058-64. doi: 10.1021/nl2002268. Epub 2011 Jul 8.

PMID:
21696176
9.

Ribbon aromaticity in double-chain planar B(n)H2(2-) and Li2B(n)H2 nanoribbon clusters up to n = 22: lithiated boron dihydride analogues of polyenes.

Bai H, Chen Q, Miao CQ, Mu YW, Wu YB, Lu HG, Zhai HJ, Li SD.

Phys Chem Chem Phys. 2013 Nov 21;15(43):18872-80. doi: 10.1039/c3cp53761g.

PMID:
24089246
10.

Electron-Lattice Coupling in Armchair Graphene Nanoribbons.

de Oliveira Neto PH, Teixeira JF, da Cunha WF, Gargano R, E Silva GM.

J Phys Chem Lett. 2012 Oct 18;3(20):3039-42. doi: 10.1021/jz301247u. Epub 2012 Oct 5.

PMID:
26292246
11.

Quantum transport through a graphene nanoribbon-superconductor junction.

Sun QF, Xie XC.

J Phys Condens Matter. 2009 Aug 26;21(34):344204. doi: 10.1088/0953-8984/21/34/344204. Epub 2009 Jul 27.

PMID:
21715779
12.

Spatially separated spin carriers in spin-semiconducting graphene nanoribbons.

Wang ZF, Jin S, Liu F.

Phys Rev Lett. 2013 Aug 30;111(9):096803. Epub 2013 Aug 29.

PMID:
24033061
13.

Electron transport in disordered graphene nanoribbons.

Han MY, Brant JC, Kim P.

Phys Rev Lett. 2010 Feb 5;104(5):056801. Epub 2010 Feb 1.

PMID:
20366782
14.

The effects of defects on the conductance of graphene nanoribbons.

Gorjizadeh N, Farajian AA, Kawazoe Y.

Nanotechnology. 2009 Jan 7;20(1):015201. doi: 10.1088/0957-4484/20/1/015201. Epub 2008 Dec 5.

PMID:
19417243
15.

Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges.

Bilić A, Sanvito S.

J Chem Phys. 2013 Jan 7;138(1):014704. doi: 10.1063/1.4773020.

PMID:
23298054
16.

Effect of contact area on electron transport through graphene-metal interface.

Liu H, Kondo H, Ohno T.

J Chem Phys. 2013 Aug 21;139(7):074703. doi: 10.1063/1.4818519.

PMID:
23968103
17.

Magnetic correlations in short and narrow graphene armchair nanoribbons.

Golor M, Koop C, Lang TC, Wessel S, Schmidt MJ.

Phys Rev Lett. 2013 Aug 23;111(8):085504. Epub 2013 Aug 21.

PMID:
24010454
18.

Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.

Zhang G, Li X, Wu G, Wang J, Culcer D, Kaxiras E, Zhang Z.

Nanoscale. 2014 Mar 21;6(6):3259-67. doi: 10.1039/c3nr05284b. Epub 2014 Feb 7.

PMID:
24509485
19.

Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons.

La Magna A, Deretzis I.

Nanoscale Res Lett. 2011 Mar 18;6(1):234. doi: 10.1186/1556-276X-6-234.

20.

Metal-to-insulator transition and electron-hole puddle formation in disordered graphene nanoribbons.

Schubert G, Fehske H.

Phys Rev Lett. 2012 Feb 10;108(6):066402. Epub 2012 Feb 9.

PMID:
22401092
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk