Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 96

Similar articles for PubMed (Select 19209728)

1.

FastChi: an efficient algorithm for analyzing gene-gene interactions.

Zhang X, Zou F, Wang W.

Pac Symp Biocomput. 2009:528-39.

2.
3.

COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study.

Zhang X, Pan F, Xie Y, Zou F, Wang W.

J Comput Biol. 2010 Mar;17(3):401-15. doi: 10.1089/cmb.2009.0155.

PMID:
20377453
4.

Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses.

Wongseree W, Assawamakin A, Piroonratana T, Sinsomros S, Limwongse C, Chaiyaratana N.

BMC Bioinformatics. 2009 Sep 17;10:294. doi: 10.1186/1471-2105-10-294.

5.

Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.

Liu Y, Maxwell S, Feng T, Zhu X, Elston RC, Koyut├╝rk M, Chance MR.

BMC Syst Biol. 2012;6 Suppl 3:S15. doi: 10.1186/1752-0509-6-S3-S15. Epub 2012 Dec 17.

6.

GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.

Goudey B, Rawlinson D, Wang Q, Shi F, Ferra H, Campbell RM, Stern L, Inouye MT, Ong CS, Kowalczyk A.

BMC Genomics. 2013;14 Suppl 3:S10. doi: 10.1186/1471-2164-14-S3-S10. Epub 2013 May 28.

7.

High-order SNP combinations associated with complex diseases: efficient discovery, statistical power and functional interactions.

Fang G, Haznadar M, Wang W, Yu H, Steinbach M, Church TR, Oetting WS, Van Ness B, Kumar V.

PLoS One. 2012;7(4):e33531. doi: 10.1371/journal.pone.0033531. Epub 2012 Apr 19.

8.

A fast multilocus test with adaptive SNP selection for large-scale genetic-association studies.

Zhang H, Shi J, Liang F, Wheeler W, Stolzenberg-Solomon R, Yu K.

Eur J Hum Genet. 2014 May;22(5):696-702. doi: 10.1038/ejhg.2013.201. Epub 2013 Sep 11.

9.

Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.

Guo X, Meng Y, Yu N, Pan Y.

BMC Bioinformatics. 2014 Apr 10;15:102. doi: 10.1186/1471-2105-15-102.

10.
11.

TEAM: efficient two-locus epistasis tests in human genome-wide association study.

Zhang X, Huang S, Zou F, Wang W.

Bioinformatics. 2010 Jun 15;26(12):i217-27. doi: 10.1093/bioinformatics/btq186.

12.

Genome-wide algorithm for detecting CNV associations with diseases.

Xu Y, Peng B, Fu Y, Amos CI.

BMC Bioinformatics. 2011 Aug 9;12:331. doi: 10.1186/1471-2105-12-331.

13.

RAPID detection of gene-gene interactions in genome-wide association studies.

Brinza D, Schultz M, Tesler G, Bafna V.

Bioinformatics. 2010 Nov 15;26(22):2856-62. doi: 10.1093/bioinformatics/btq529. Epub 2010 Sep 24.

14.

Genome-wide tagging SNPs with entropy-based Monte Carlo method.

Liu Z, Lin S, Tan M.

J Comput Biol. 2006 Nov;13(9):1606-14.

PMID:
17147483
15.

Design considerations for genetic linkage and association studies.

Nsengimana J, Bishop DT.

Methods Mol Biol. 2012;850:237-62. doi: 10.1007/978-1-61779-555-8_13.

PMID:
22307702
16.
17.

Testing association with interactions by partitioning chi-squares.

Yang Y, He C, Ott J.

Ann Hum Genet. 2009 Jan;73(1):109-17. doi: 10.1111/j.1469-1809.2008.00480.x. Epub 2008 Sep 16.

PMID:
18798840
18.

Shrunken methodology to genome-wide SNPs selection and construction of SNPs networks.

Liu Y, Ng M.

BMC Syst Biol. 2010 Sep 13;4 Suppl 2:S5. doi: 10.1186/1752-0509-4-S2-S5.

19.

A likelihood ratio-based Mann-Whitney approach finds novel replicable joint gene action for type 2 diabetes.

Lu Q, Wei C, Ye C, Li M, Elston RC.

Genet Epidemiol. 2012 Sep;36(6):583-93. doi: 10.1002/gepi.21651. Epub 2012 Jul 3.

20.

TreeQA: quantitative genome wide association mapping using local perfect phylogeny trees.

Pan F, McMillan L, Pardo-Manuel De Villena F, Threadgill D, Wang W.

Pac Symp Biocomput. 2009:415-26.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk