Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover.

Quintero-Monzon O, Jonasson EM, Bertling E, Talarico L, Chaudhry F, Sihvo M, Lappalainen P, Goode BL.

J Biol Chem. 2009 Apr 17;284(16):10923-34. doi: 10.1074/jbc.M808760200. Epub 2009 Feb 6.

2.

Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics.

Jansen S, Collins A, Golden L, Sokolova O, Goode BL.

J Biol Chem. 2014 Oct 31;289(44):30732-42. doi: 10.1074/jbc.M114.601765. Epub 2014 Sep 16.

3.

A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein.

Mattila PK, Quintero-Monzon O, Kugler J, Moseley JB, Almo SC, Lappalainen P, Goode BL.

Mol Biol Cell. 2004 Nov;15(11):5158-71. Epub 2004 Sep 8.

4.

Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1.

Balcer HI, Goodman AL, Rodal AA, Smith E, Kugler J, Heuser JE, Goode BL.

Curr Biol. 2003 Dec 16;13(24):2159-69.

5.

A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo.

Chaudhry F, Little K, Talarico L, Quintero-Monzon O, Goode BL.

Cytoskeleton (Hoboken). 2010 Feb;67(2):120-33. doi: 10.1002/cm.20429.

6.

Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin.

Chaudhry F, Breitsprecher D, Little K, Sharov G, Sokolova O, Goode BL.

Mol Biol Cell. 2013 Jan;24(1):31-41. doi: 10.1091/mbc.E12-08-0589. Epub 2012 Nov 7.

7.

Mechanism and biological role of profilin-Srv2/CAP interaction.

Bertling E, Quintero-Monzon O, Mattila PK, Goode BL, Lappalainen P.

J Cell Sci. 2007 Apr 1;120(Pt 7):1225-34.

8.

Autonomous and in trans functions for the two halves of Srv2/CAP in promoting actin turnover.

Chaudhry F, Jansen S, Little K, Suarez C, Boujemaa-Paterski R, Blanchoin L, Goode BL.

Cytoskeleton (Hoboken). 2014 Jun;71(6):351-60. doi: 10.1002/cm.21170. Epub 2014 Apr 25.

9.

Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism.

Makkonen M, Bertling E, Chebotareva NA, Baum J, Lappalainen P.

J Biol Chem. 2013 Jan 11;288(2):984-94. doi: 10.1074/jbc.M112.435719. Epub 2012 Nov 26.

10.

Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover.

Moriyama K, Yahara I.

J Cell Sci. 2002 Apr 15;115(Pt 8):1591-601.

11.

Mapping the cofilin binding site on yeast G-actin by chemical cross-linking.

Grintsevich EE, Benchaar SA, Warshaviak D, Boontheung P, Halgand F, Whitelegge JP, Faull KF, Loo RR, Sept D, Loo JA, Reisler E.

J Mol Biol. 2008 Mar 21;377(2):395-409. doi: 10.1016/j.jmb.2007.12.073. Epub 2008 Jan 5.

12.

Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

Chaudhry F, Guérin C, von Witsch M, Blanchoin L, Staiger CJ.

Mol Biol Cell. 2007 Aug;18(8):3002-14. Epub 2007 May 30.

13.

Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells.

Bertling E, Hotulainen P, Mattila PK, Matilainen T, Salminen M, Lappalainen P.

Mol Biol Cell. 2004 May;15(5):2324-34. Epub 2004 Mar 5.

14.

Rapid nucleotide exchange renders Asp-11 mutant actins resistant to depolymerizing activity of cofilin, leading to dominant toxicity in vivo.

Umeki N, Nakajima J, Noguchi TQ, Tokuraku K, Nagasaki A, Ito K, Hirose K, Uyeda TQ.

J Biol Chem. 2013 Jan 18;288(3):1739-49. doi: 10.1074/jbc.M112.404657. Epub 2012 Dec 3.

15.

A cytoskeletal localizing domain in the cyclase-associated protein, CAP/Srv2p, regulates access to a distant SH3-binding site.

Yu J, Wang C, Palmieri SJ, Haarer BK, Field J.

J Biol Chem. 1999 Jul 9;274(28):19985-91.

16.

Glia maturation factor (GMF) interacts with Arp2/3 complex in a nucleotide state-dependent manner.

Boczkowska M, Rebowski G, Dominguez R.

J Biol Chem. 2013 Sep 6;288(36):25683-8. doi: 10.1074/jbc.C113.493338. Epub 2013 Jul 29.

17.

Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance.

Kotiadis VN, Leadsham JE, Bastow EL, Gheeraert A, Whybrew JM, Bard M, Lappalainen P, Gourlay CW.

J Cell Sci. 2012 May 1;125(Pt 9):2288-99. doi: 10.1242/jcs.099390. Epub 2012 Feb 17.

18.

Structural conservation between the actin monomer-binding sites of twinfilin and actin-depolymerizing factor (ADF)/cofilin.

Paavilainen VO, Merckel MC, Falck S, Ojala PJ, Pohl E, Wilmanns M, Lappalainen P.

J Biol Chem. 2002 Nov 8;277(45):43089-95. Epub 2002 Aug 30.

19.

Screening of novel dominant negative mutant actins using glycine targeted scanning identifies G146V actin that cooperatively inhibits cofilin binding.

Noguchi TQ, Toya R, Ueno H, Tokuraku K, Uyeda TQ.

Biochem Biophys Res Commun. 2010 Jun 11;396(4):1006-11. doi: 10.1016/j.bbrc.2010.05.047. Epub 2010 May 13.

PMID:
20471369
20.

Structure of the actin-depolymerizing factor homology domain in complex with actin.

Paavilainen VO, Oksanen E, Goldman A, Lappalainen P.

J Cell Biol. 2008 Jul 14;182(1):51-9. doi: 10.1083/jcb.200803100.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk